

Test and Measurement Division

Manual

Average Power Sensor

R&S[®] NRP-Z22

10 MHz to 18 GHz / 2 nW to 1.5 W **1137.7506.02**

R&S[®] NRP-Z23

10 MHz to 18 GHz / 20 nW to 15 W 1137.8002.02

R&S[®] NRP-Z24

10 MHz to 18 GHz / 60 nW to 30 W **1137.8502.02**

Printed in the Federal Republic of Germany

Dear Customer,

 $R\&S \ensuremath{\$}$ is a registered trademark of Rohde & Schwarz GmbH & Co. KG. Trade names are trademarks of the owners.

Operation of Power Sensors R&S NRP-Z22/-Z23/-Z24 from R&S NRP base unit

The power sensors shipped with this manual have firmware revision **02.20** or higher. For operation from an R&S NRP base unit, all software components within the base unit must be of revision **02.00** or higher.

Revision numbers for the software components installed in the base unit can be displayed under menu item 'System Info', lines 'Main Program', 'Bootloader' and 'Keybd. Ctrl.'. The 'System Info' can be found in the 'File' menu for revision numbers lower than 02.00 and in the 'System' menu otherwise.

Tabbed Divider Overview

Data Sheet

Safety Instructions Certificate of Quality EU Certificate of Conformity List of R&S Representatives

Tabbed Divider

1	Chapter 1:	Putting into Operation
2	Chapter 2:	Virtual Power Meter
3	Chapter 3:	Operation
4	Chapter 4:	for future extensions
5	Chapter 5:	Remote Control – Basics
6	Chapter 6:	Remote Control – Commands
7	Chapter 7:	for future extensions
8	Service Inst	ructions

Technical Information

Power Sensors R&S NRP-Z22, -Z23, -Z24

The right choice for medium-power applications

These power sensors with nominal powers of 2 W (R&S NRP-Z22), 15 W (R&S NRP-Z23) and 30 W (R&S NRP-Z24) expand the measurement capabilities of the R&S NRP family in the frequency range from 10 MHz to 18 GHz. They allow direct power measurement at the output of power amplifiers, radio equipment or digital mobile radio base stations. Tried-and-tested precision attenuators ahead of the power sensor ensure high measurement accuracy and excellent stability of the electrical characteristics. The new products are of great

benefit, since they provide full accuracy even if they are used without an attenuator being connected. In this case, they behave like a standard R&S NRP-Z21 sensor with a nominal power of 200 mW and a lower measurement threshold of 200 pW (-67 dBm). The full functionality of this sensor type – including 90 dB dynamic range, suitability for modulated signals, time gating, etc – is available in every operating mode, i.e. also with adapted attenuator.

Specifications

Specifications apply when the power sensor is operated together with the supplied power attenuator (pad). Please refer to the specifications of the R&S NRP-Z21 in the R&S NRP data sheet (PD 0757.7023.21) when operating the power sensor alone.

Bold: Parameter 100% tested

Italics: Uncertainties calculated from the test assembly specifications and the modelled behaviour of the sensor.

Normal: Compliance with specifications is ensured by the design or derived from the measurement of related parameters

Power Sensor R&S NRP-Z22

Frequency range			10 MHz to 18 GHz
Matching (SWR)	10 MHz to 2.4 GHz > 2.4 GHz to 8.0 GHz > 8.0 GHz to 12.4 GHz > 12.4 GHz to 18 GHz		< 1.14 < 1.20 < 1.25 < 1.30
Power measurement range	Continuous Average Burst Average Timeslot Scope		$\begin{array}{c} 2 \text{ nW to } 2 \text{ W} & (-57 \text{ dBm to } +33 \text{ dBm}) \\ 2 \mu\text{W to } 2 \text{ W} & (-27 \text{ dBm to } +33 \text{ dBm}) \\ 7 \text{ nW to } 2 \text{ W} & (-52 \text{ dBm to } +33 \text{ dBm})^3) \\ 100 \text{ nW to } 2 \text{ W} & (-40 \text{ dBm to } +33 \text{ dBm})^4) \end{array}$
Max. power	Average		3 W (+35 dBm) continuous (see diagram)
	Peak envelope power		10 W (+40 dBm) for max. 10 μs
Measurement subranges		Path 1 Path 2 Path 3	-57 dBm to - 4 dBm -37 dBm to +16 dBm -17 dBm to +33 dBm
Transition ranges	With automatic path sele user def'd crossover ⁵) se		(- 9±1.5) dBm to (- 3±1.5) dBm (+11±1.5) dBm to (+17±1.5) dBm
Display noise ¹⁴⁾		Path 1 Path 2 Path 3	< 0.8 nW (0.4 nW typ.) < 80 nW (40 nW typ.) < 8 µW (4 µW typ.)
Display noise, relative ¹⁵⁾	Measurement window 2 without averaging	× 100 µs,	< 0.160 dB (0.1 dB typ.)
	Measurement window 2 averaging factor 32 (mea ment time approx. 1 s)	,	< 0.002 dB (0.001 dB typ.)
Zero offset ¹⁷⁾		Path 1 Path 2 Path 3	 1.3 nW (0.7 nW typ.) 0.12 µW (60 nW typ.) 12 µW (6 µW typ.)
Zero drift ¹⁸⁾		Path 1 Path 2 Path 3	< 0.4 nW < 40 nW < 4 µW
Triggering	Source		Bus, External, Hold, Immediate, Internal
	Slope (external, internal))	pos./neg.
	Level Internal External		-30 dBm to +33 dBm See specs for R&S NRP and USB Adapter R&S NRP-Z3
	Delay		-5 ms to +100 s
	Holdoff		0 s to 10 s
	Hysteresis		0 dB to 10 dB

Power Sensor R&S NRP-Z22 (continued)

Uncertainty for absolute power measurements in up	Incertainty for absolute power measurements ³¹⁾ in dB
---	--

		10 MHz to	< 100 MHz			100 MHz t	o < 4 GHz		
	0.180 0.096	0.237 0.124	0.281 0.149	0.316 0.170	0.186 0.106	0.242 0.133	0.285 0.157	0.320 0.176	(0 to <mark>35</mark> /40/50)°C (15 to 35) °C
	0.030	0.088	0.149 0.104	0.119	0.085	0.098	0.137	0.178	(15 to 35) °C (20 to 25) °C
-;	30 ³⁷⁾ to +2	20 to +3	30 to +3	32 to +33	-30 ³⁷⁾ to +2	0 to +3	0 to +32	to +3	3 dBm

4 G	Hz to	< 12	.4 GHz

12.4 GHz to 18 GHz

	0.203 0.133 0.116	0.255 0.156 0.125	0.296 0.176 0.137	0.330 0.194 0.151		0.223 0.163 0.147	0.271 0.182 0.155	0.310 0.199 0.165	0.343 0.215 0.178	(0 to <mark>35/40</mark> /50)°C (15 to 35) °C (20 to 25) °C
-:	30 ³⁷⁾ to +2	20 to +3	30 to +3	32 to +33	-:	30 ³⁷⁾ to +2	:0 to +3	0 to +32	2 to +3	3 dBm

Uncertainty for relative power measurements ^{32), 33), 36)} in dB

	10 M	IHz to < 100 N	1Hz		10	0 MHz to 4 GI	Ηz	
+33	0.286 0.108	0.298 0.109	0.031 0.022	+33	0.272 0.112	0.289 0.113	0.041 0.032	(0 to 50) °C (15 to 35) °C (20 to 25) °C
+18	0.052	0.045	0.022	+18	0.060	0.053	0.031	(20 to 25) °C
+10	0.283 0.108	0.031 0.022	0.298 0.109	+10	0.268 0.108	0.032 0.022	0.289 0.113	(0 to 50) °C (15 to 35) °C
-2	0.051	0.022	0.045	-2	0.054	0.022	0.053	(20 to 25) °C
-10	0.023 0.022	0.283 0.108	0.286 0.108	-10	0.024 0.022	0.268 0.108	0.272 0.112	(0 to 50) °C (15 to 35) °C
-30 ³⁷)	0.022	0.051	0.052	-30 ³⁷)	0.022	0.054	0.060	(10 to 05) °C
dBm ∹	30 ³⁷⁾ -10 /	-2 +10/-	+18 +33	3 dBm -	-10 /	-2 +10/	+18 +3	33
	> 4	GHz to 12.4 G	iHz		>12	.4 GHz to 18 C	GHz	

+33	0.284	0.299	0.066
	0.131	0.130	0.061
+18	0.087	0.081	0.060
		1	
+10	0.277	0.037	0.299
	0.118	0.027	0.130
-2	0.068	0.025	0.081
4.0]		
-10	0.024	0.277	0.284
	0.022	0.118	0.131
-30 ³⁷)	0.022	0.068	0.087
dBm -:	30 ³⁷⁾ -10 /	-2 +10	/ +18 +33

+33 +18	0.300 0.152 0.112	0.310 0.148 0.106	0.088 0.084 0.083	(0 to 50) °C (15 to 35) °C (20 to 25) °C
+10 -2	0.288 0.131 0.082	0.043 0.035 0.033	0.310 0.148 0.106	(0 to 50) °C (15 to 35) °C (20 to 25) °C
-10 -30 ³⁷)	0.024 0.022 0.022	0.288 0.131 0.082	0.300 0.152 0.112	(0 to 50) °C (15 to 35) °C (20 to 25) °C
dBm	-30 ³⁷⁾ -10	/ -2 +10 /	+18 +3	

Frequency range			10 MHz to 18 GHz
Matching (SWR)	10 MHz to 2.4 GHz >2.4 GHz to 8.0 GHz >8.0 GHz to 12.4 GHz >12.4 GHz to 18 GHz		<1.14 <1.25 <1.30 <1.41
Power measurement range	Continuous Average Burst Average Timeslot Scope		$\begin{array}{llllllllllllllllllllllllllllllllllll$
Max. power	Average		18 W (+42.5 dBm) continuous (see diagram)
	Peak envelope power		100 W (+50 dBm) for max. 10 μs
Measurement subranges		Path 1 Path 2 Path 3	-47 dBm to + 6 dBm -27 dBm to + 26 dBm - 7 dBm to + 42 dBm
Transition ranges	With automatic path sel user def'd crossover ⁵) s		(+ 1±1.75) dBm to (+ 7±1.75) dBm (+21±1.75) dBm to (+27±1.75) dBm
Display noise ¹⁴⁾		Path 1 Path 2 Path 3	< 8 nW (4 nW typ.) < 0.8 µW (0.4 µW typ.) < 80 µW (40 µW typ.)
Display noise, relative ¹⁵⁾	Measurement window 2 without averaging	2 × 100 µs,	< 0.160 dB (0.1 dB typ.)
	Measurement window 2 averaging factor 32 (me ment time approx. 1 s)		< 0.002 dB (0.001 dB typ.)
Zero offset ¹⁷⁾		Path 1 Path 2 Path 3	< 13 nW (7 nW typ.) < 1.3 µW (0.6 µW typ.) < 0.13 mW (60 µW typ.)
Zero drift ¹⁸⁾		Path 1 Path 2 Path 3	< 5 nW < 0.4 µW < 40 µW
Triggering	Source		Bus, External, Hold, Immediate, Internal
	Slope (external, interna	I)	pos./neg.
	Level Internal External		-19 dBm to +42 dBm See specs for R&S NRP and USB Adapter R&S NRP-Z3
	Delay		-5 ms to +100 s
	Holdoff		0 s to 10 s
	Hysteresis		0 dB to 10 dB

Power Sensor R&S NRP-Z23 (continued)

10 MHz to < 100 MHz 100 MHz to < 4 GHz 0.194 0.203 0.227 0.257 0.187 0.197 0.222 0.253 (0 to 50) °C 0.096 0.106 0.137 0.175 0.105 0.115 (15 to 35) °C 0.144 0.181 0.078 0.081 0.111 0.149 0.087 0.094 0.120 0.156 (20 to 25) °C -20³⁷⁾ to +30 -20³⁷⁾ to +30 to +36 to +40 to +42 to +36 +40 to +42 dBm to

Uncertainty for absolute power measurements³¹⁾ in dB

		4 GHz to <	< 12.4 GHz				12.4 GHz	to 18 GHz		
	0.209 0.133 0.117	0.217 0.140 0.122	0.240 0.165 0.144	0.269 0.198 0.175		0.238 0.166 0.151	0.245 0.172 0.155	0.266 0.193 0.172	0.292 0.221 0.199	(0 to 50) °C (15 to 35) °C (20 to 25) °C
-:	20 ³⁷⁾ to +3	0 to +3	6 to +4	0 to +42	: -:	20 ³⁷⁾ to +3	0 to +3	6 to +4	0 to +42	2 dBm

Uncertainty for relative power measurements ^{32), 33), 36)} in dB

	10 N	1Hz to < 100 l	MHz		10	0 MHz to 4 G	Hz	
+42	0.226 0.084	0.229 0.080	0.027 0.022	+42	0.209 0.088	0.218 0.085	0.038 0.032	(0 to 50) °C (15 to 35) °C
+28	0.046	0.044	0.022	+28	0.055	0.047	0.031	(20 to 25) °C
+20	0.226	0.027	0.229	+20	0.206	0.028	0.218	(0 to 50) °C
	0.083	0.022	0.080		0.083	0.022	0.085	(15 to 35) °C
+8	0.045	0.022	0.044	+8	0.048	0.022	0.047	(20 to 25) °C
±0	0.023	0.226	0.226	±0	0.023	0.206	0.209	(0.1- 50) 00
	0.022	0.083	0.084		0.022	0.083	0.088	(0 to 50) °C (15 to 35) °C
-20 ³⁷)	0.022	0.045	0.046	-20 ³⁷)	0.022	0.048	0.055	(15 to 35) °C (20 to 25) °C
dBm -2	20 ³⁷⁾ ±0/	+8 +20	/ +28 +4	12 dBm	-20 ³⁷⁾ ±0/	+8 +20 /	/ +28 +4	42
	> 4	GHz to 12.4 (GHz		>12	.4 GHz to 18	GHz	
+42	> 4 0.224	GHz to 12.4 (0.231	GHz 0.064	+42	> 12 0.244	.4 GHz to 18 0.245	GHz 0.086	(0 to 50) °C
+42			-	+42			-	(0 to 50) °C (15 to 35) °C
+42 +28	0.224	0.231	0.064	+42 +28	0.244	0.245	0.086	`` '
+28	0.224 0.111 0.084	0.231 0.106 0.077	0.064 0.061 0.060	+28	0.244 0.135 0.110	0.245 0.128 0.102	0.086 0.084 0.083	(15 to 35) °C (20 to 25) °C
	0.224 0.111 0.084 0.216	0.231 0.106 0.077 0.034	0.064 0.061 0.060 0.231		0.244 0.135 0.110 0.230	0.245 0.128 0.102 0.040	0.086 0.084 0.083 0.245	(15 to 35) °C (20 to 25) °C (0 to 50) °C
+28 +20	0.224 0.111 0.084 0.216 0.096	0.231 0.106 0.077 0.034 0.027	0.064 0.061 0.060 0.231 0.106	+28 +20	0.244 0.135 0.110 0.230 0.112	0.245 0.128 0.102 0.040 0.034	0.086 0.084 0.083 0.245 0.128	(15 to 35) °C (20 to 25) °C (0 to 50) °C (15 to 35) °C
+28	0.224 0.111 0.084 0.216	0.231 0.106 0.077 0.034	0.064 0.061 0.060 0.231	+28	0.244 0.135 0.110 0.230	0.245 0.128 0.102 0.040	0.086 0.084 0.083 0.245	(15 to 35) °C (20 to 25) °C (0 to 50) °C
+28 +20	0.224 0.111 0.084 0.216 0.096	0.231 0.106 0.077 0.034 0.027	0.064 0.061 0.060 0.231 0.106	+28 +20	0.244 0.135 0.110 0.230 0.112	0.245 0.128 0.102 0.040 0.034	0.086 0.084 0.083 0.245 0.128	(15 to 35) °C (20 to 25) °C (0 to 50) °C (15 to 35) °C (20 to 25) °C
+28 +20 +8	0.224 0.111 0.084 0.216 0.096 0.063	0.231 0.106 0.077 0.034 0.027 0.025	0.064 0.061 0.060 0.231 0.106 0.077	+28 +20 +8 ±0	0.244 0.135 0.110 0.230 0.112 0.079	0.245 0.128 0.102 0.040 0.034 0.033	0.086 0.084 0.083 0.245 0.128 0.102	(15 to 35) °C (20 to 25) °C (0 to 50) °C (15 to 35) °C (20 to 25) °C (20 to 25) °C (0 to 50) °C
+28 +20 +8	0.224 0.111 0.084 0.216 0.096 0.063 0.024	0.231 0.106 0.077 0.034 0.027 0.025 0.216	0.064 0.061 0.060 0.231 0.106 0.077 0.224	+28 +20 +8	0.244 0.135 0.110 0.230 0.112 0.079 0.024	0.245 0.128 0.102 0.040 0.034 0.033 0.230	0.086 0.084 0.083 0.245 0.128 0.102 0.244	(15 to 35) °C (20 to 25) °C (0 to 50) °C (15 to 35) °C (20 to 25) °C

Frequency range			10 MHz to 18 GHz
Matching (SWR)	10 MHz to 2.4 GHz >2.4 GHz to 8.0 GHz >8.0 GHz to 12.4 GHz >12.4 GHz to 18 GHz		<1.14 <1.25 <1.30 <1.41
Power measurement range	Continuous Average Burst Average Timeslot Scope		$\begin{array}{ll} 60 \ nW \ to \ 30 \ W & (-42 \ dBm \ to \ +45 \ dBm) \\ 60 \ \mu W \ to \ 30 \ W & (-12 \ dBm \ to \ +45 \ dBm) \\ 0.2 \ \mu W \ to \ 30 \ W & (-37 \ dBm \ to \ +45 \ dBm)^3) \\ 3 \ \mu W \ to \ 30 \ W & (-25 \ dBm \ to \ +45 \ dBm)^4) \end{array}$
Max. power	Average		36 W (+45.5 dBm) continuous (see diagram)
	Peak envelope power		300 W (+55 dBm) for max. 10 μs
Measurement subranges		Path 1 Path 2 Path 3	-42 dBm to +11 dBm -22 dBm to +31 dBm - 2 dBm to +45 dBm
Transition ranges	With automatic path selection with automatic path selection of the selecti	ection, et to 0 dB	(+ 6±2) dBm to (+12±2) dBm (+26±2) dBm to (+32±2) dBm
Display noise ¹⁴⁾		Path 1 Path 2 Path 3	< 27 nW (13 nW typ.) < 2.6 µW (1.2 µW typ.) < 0.26 mW (0.12 mW typ.)
Display noise, relative ¹⁵⁾	Measurement window 2 without averaging	× 100 μs,	< 0.160 dB (0.1 dB typ.)
	Measurement window 2 averaging factor 32 (me ment time approx. 1 s)	,	< 0.002 dB (0.001 dB typ.)
Zero offset ¹⁷⁾		Path 1 Path 2 Path 3	< 44 nW (20 nW typ.) < 4.2 μW (2 μW typ.) <0.42 mW (0.2 mW typ.)
Zero drift ¹⁸⁾		Path 1 Path 2 Path 3	< 15 nW < 1.3 µW < 0.13 mW
Triggering	Source		Bus, External, Hold, Immediate, Internal
	Slope (external, internal)	pos./neg.
	Level Internal External		-14 dBm to +45 dBm See specs for R&S NRP and USB Adapter R&S NRP-Z3
	Delay		-5 ms to +100 s
	Holdoff		0 s to 10 s
	Hysteresis		0 dB to 10 dB

Power Sensor R&S NRP-Z24 (continued)

	10 MHz to < 100 MHz			100 MHz to < 4 GHz						
	0.199 0.098 0.078	0.218 0.120 0.091	0.249 0.158 0.128	0.291 0.208 0.178		0.193 0.108 0.088	0.212 0.128 0.102	0.244 0.164 0.136	0.287 0.213 0.184	(0 to 50) °C (15 to 35) °C (20 to 25) °C
-	-15 ³⁷⁾ to +33 to +40 to +43 to +45 -15 ³⁷⁾ to +33 to +40 to +43 to +45 dBm									

Uncertainty for absolute power measurements³¹⁾ in dB

4 GHz to < 12.4 GHz

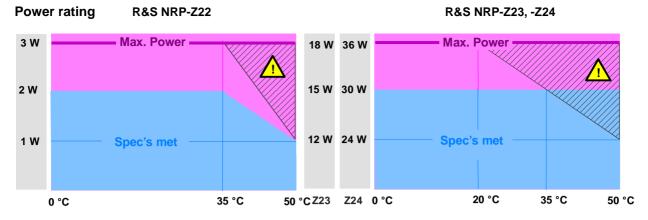
12.4 GHz to 18 GHz

0.214 0.135 0.118	0.231 0.151 0.129	0.260 0.183 0.157	0.301 0.228 0.201		0.242 0.167 0.151	0.258 0.181 0.160	0.284 0.208 0.183	0.322 0.248 0.222	(0 to 50) °C (15 to 35) °C (20 to 25) °C
 15 ³⁷⁾ to +3	33 to +4	10 to +4	43 to +45	; -	15 ³⁷⁾ to +3	33 to +4	40 to +4	43 to +4	5 dBm

Uncertainty for relative power measurements ^{32), 33), 36)} in dB

	10 N	1Hz to < 100	MHz		10	0 MHz to 4 G	Hz	
+45	0.226 0.084	0.229 0.080	0.027 0.022	+45	0.209 0.088	0.218 0.085	0.038 0.032	(0 to 50) °C (15 to 35) °C
+33	0.046	0.044	0.022	+33	0.055	0.047	0.031	(20 to 25) °C
+25	0.226 0.083	0.027 0.022	0.229 0.080	+25	0.206 0.083	0.028 0.022	0.218 0.085	(0 to 50) °C (15 to 35) °C
+13	0.045	0.022	0.000	+13	0.048	0.022	0.005	(13 to 33) °C (20 to 25) °C
+5	0.023	0.226	0.226	+5	0.023	0.206	0.209	(0 to 50) °C
-15 ³⁷)	0.022 0.022	0.083 0.045	0.084 0.046	-15 ³⁷)	0.022 0.022	0.083 0.048	0.088 0.055	(15 to 35) °C (20 to 25) °C
dBm -15 ³⁷⁾ +5/+13 +25/+33 +45 dBm -15 ³⁷⁾ +5/+13 +25/+33 +45								
	> 4	GHz to 12.4 (GHz		>12	.4 GHz to 18	GHz	
+45	0.224	0.231	0.064	+45	0.244	0.245	0.086	(0 to 50) °C
+45 +33		- ··-	-	+45 +33			-	(0 to 50) °C (15 to 35) °C (20 to 25) °C
+33	0.224 0.111 0.084	0.231 0.106 0.077	0.064 0.061 0.060	+33	0.244 0.135 0.110	0.245 0.128 0.102	0.086 0.084 0.083	(15 to 35) °C (20 to 25) °C
	0.224 0.111	0.231 0.106	0.064 0.061		0.244 0.135	0.245 0.128	0.086 0.084	(15 to 35) °C
+33	0.224 0.111 0.084 0.216	0.231 0.106 0.077 0.034	0.064 0.061 0.060 0.231	+33	0.244 0.135 0.110 0.230	0.245 0.128 0.102 0.040	0.086 0.084 0.083 0.245	(15 to 35) °C (20 to 25) °C (0 to 50) °C
+33 +25	0.224 0.111 0.084 0.216 0.096 0.063 0.024	0.231 0.106 0.077 0.034 0.027 0.025 0.216	0.064 0.061 0.060 0.231 0.106 0.077 0.224	+33 +25	0.244 0.135 0.110 0.230 0.112 0.079 0.024	0.245 0.128 0.102 0.040 0.034 0.033 0.230	0.086 0.084 0.083 0.245 0.128 0.102 0.244	(15 to 35) °C (20 to 25) °C (0 to 50) °C (15 to 35) °C
+33 +25 +13	0.224 0.111 0.084 0.216 0.096 0.063	0.231 0.106 0.077 0.034 0.027 0.025	0.064 0.061 0.060 0.231 0.106 0.077	+33 +25 +13	0.244 0.135 0.110 0.230 0.112 0.079	0.245 0.128 0.102 0.040 0.034 0.033	0.086 0.084 0.083 0.245 0.128 0.102	(15 to 35) °C (20 to 25) °C (0 to 50) °C (15 to 35) °C (20 to 25) °C

7

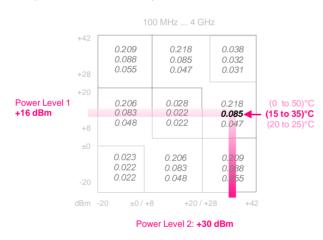

Additional characteristics of the R&S NRP-Z22/-Z23/-Z24

Sensor type		3-path diode se attenuator	ensor with pre	eceding power
Measurand		average power of incident wave average power of source into 50 Ω^1)		
RF connector		N (male)		
Power attenuator	R&S NRP-Z22 R&S NRP-Z23 R&S NRP-Z24	10 dB 20 dB 25 dB		
Calibration uncertainty ³⁰⁾		Path 1	Path 2	Path 3
in dB	0.01 GHz to < 0.1 GHz	0.078	0.072	0.073
(20 to 25) °C	0.1 GHz to 4.0 GHz	0.084	0.077	0.077
	> 4 GHz to 12.4 GHz	0.110	0.095	0.095
	> 12.4 GHz to 18.0 GHz	0.139	0.118	0.18
Measurement functions	Stationary and periodically modulated signals	Continuous Ave Burst Average Timeslot Scope	erage	
	Non-recurring waveforms	Scope		
Continuous Average func-	Measurement window ⁷⁾	2 imes (10 µs to 30	00 ms)	
tion Continuous measurement of	Duty cycle correction ⁸⁾ Smoothing	0.001% to 100.00% See under Measurement window		ndow
average power	Capacity of measurement buffer ⁹⁾			
Burst Average function	Detectable burst width	20 µs to 100 ms		
Measurement of average	Minimum gap between bursts	10 µs		
burst power with automatic detection of burst (trigger	Dropout tolerance ¹⁰⁾	0 ms to 3 ms		
settings required)	Exclusion periods ¹¹⁾ Exclude from Start Exclude from End	0 ms to 100 ms 0 ms to 3 ms		
	Measurement window ⁷⁾	$2 \times$ (burst width - Excl. from Start - Excl. fro End)		Start - Excl. from
Timeslot function	Duration (nominal width)	10 µs to 100 m	S	
Measurement of average	Number of timeslots	1 to 128 (26 in 0		ation from
power in one or more equi- distant, successive timeslots	Exclusion periods ¹¹⁾ Excluded from Start Excluded from End	R&S NRP basic unit) 0 ms to 100 ms 0 ms to 3 ms		
	Measurement window (per timeslot) ⁷)	2 × (nom. width End)	- Excl. from	Start - Excl. from
Scope function	Modes	For recurring an (single)	nd non-recuri	ring waveforms
Measurement of power ver- sus time	Measurement window $\Delta^{(2)}$ Recurring Non-recurring	2 × (100 µs to 3 100 µs to 300 r		
	Number of measurement points M Resolution Δ / M	1 to 1024 ≥10 µs		
	Beginning of time window (refer- enced to trigger)	-5 ms to 100 s		

Dynamic behaviour of video path	Bandwidth Rise time 10% / 90%		> 50 kHz (100 kHz) Values in () for temp. < 8 μs (4 μs) range 15 °C to 35 °C
Sampling frequencies	Frequency 1 (default) Frequency 2 ¹³⁾		133.358 kHz 119.467 kHz
Zeroing (duration)	Depends on setting of filter	averaging	
	AUTO ON AUTO OFF		4 s
	Integration time ¹⁶) <	< 4 s 4 s to 16 s 16 s	4 s Integration time ¹⁶) 16 s
Measurement error due to harmonics $n \times f_0$ of carrier frequency ¹⁹	$N = 3, 5, 7, \dots^{20}$	-30 dBc -20 dBc -10 dBc	<0.003 dB [0.0015 dB] <0.010 dB [0.005 dB] <0.040 dB [0.015 dB]
values in []: typ. standard uncertainty	$N = 2, 4, 6, \dots^{20}$	-30 dBc -20 dBc -10 dBc	<0.001 dB [0.0003 dB] <0.002 dB [0.001 dB] <0.010 dB [0.003 dB]
Modulation influence ²¹⁾ values in []:	General		measurement errors in subranges are propor- tional to power and depend on CCDF and
User def'd crossover <-6 dB	WCDMA (3-GPP Test Model 1-6 Worst case Typical	54)	modulation bandwidth of test signal -0.02 dB to +0.07 dB [-0.02 dB to +0.02 dB] -0.01 dB to +0.03 dB [-0.01 dB to +0.01 dB]
Averaging filter	Modes		AUTO OFF(fixed averaging factor)AUTO ON(continuously auto-adapted)AUTO ONCE(automatically fixed once)
	AUTO mode Reference power Continuous Avera Burst Average Timeslot Scope ²²⁾	ge	non-averaged result in measurement window non-averaged result in measurement window non-averaged result in reference timeslot ²⁵⁾ non-averaged result at reference point ²⁵⁾
	Normal operating m	ode ²³⁾	setting of filter depends on power to be meas- ured and resolution
	Resolution		1 (1 dB), 2 (0.1 dB), 3 (0.01 dB), 4 (0.001 dB)
	Fixed Noise operation	ng mode	filter set to specified noise content
	Noise content Max. measuremer	nt time ²⁴⁾	0.0001 dB to 1 dB 0.01 s to 999 s
	Averaging factor N		1 to 2 ¹⁶ (number of averaged measurement
	Result output Moving Average		windows) continuous with every newly evaluated meas- urement window (e.g. in case of manual op- eration via R&S NRP)
	Repeat		only final result (e.g. in case of remote control of R&S NRP)
Measurement window	Duration		as specified for the individual measurement functions
	Shape		rectangular (integrating behaviour; available for all measurement functions)
			Von Hann (smoothing filter, for efficient suppression of result variations due to modula- tion ²⁶⁾ ; only for Continuous Average function)

9

Measurement times ²⁷⁾	Continuous Average	$N \times (duration of measurement win-dow7)+0.2ms) + tz$
	Buffered, without averaging	buffer size × (duration of measurement window ⁷⁾ + 0.5 ms) + t_z
	Burst Average	(2 to 4) × N × burst period + t_z
	Timeslot, Scope	(2 to 4) × N × trigger period + t_z^{28})
		<i>t</i> _z : <1.6 ms (0.9 ms on average)
Attenuation correction	Function	correcting the measurement result by means of a fixed factor (dB offset)
	Range	-100.000 dB to +100.000 dB
S-parameter correction Note: S-parameter cor-	Function	Taking into account a component connected to the sensor input by loading its s-parameter data set into the sensor
rection is automatically	Number of frequencies	1 to 1000
switched on upon power- up of the sensor, taking	Parameters	s_{11}, s_{21}, s_{12} and s_{22} (in s2p format)
into account the data of the supplied attenuator.	Download	With R&S NRP tool kit (supplied with sensor) via USB Adapter R&S NRP-Z3 or R&S NRP- Z4
Γcorrection	Function	Reducing the influence of mismatched sources ²⁹⁾
	Parameters	Magnitude and phase of reflection coefficient of source
	Download	see under S-parameter correction
Frequency response cor- rection	Function	taking into account the calibration factors relevant for the test frequency
	Parameter	carrier frequency (center frequency)
	Permissible deviation from actual value	50 MHz (0.05 $\times\text{f}$ below 1 GHz) for specified measurement uncertainty
Interface to host	Power supply	+5 V / 200 mA typ. (USB high-power device)
	Remote control	As a USB device (function) in full-speed mode, compatible with USB 1.0/1.1/2.0 specifications
	Trigger input	differential (0 / +3.3 V)
Dimensions	WxHxL	R&S NRP-Z22: 48 mm \times 31 mm \times 214 mm R&S NRP-Z23: 60 mm \times 54 mm \times 285 mm R&S NRP-Z24: 60 mm \times 54 mm \times 344 mm
		Length incl. connecting cable: approx. 1.6 m
Weight		R&S NRP-Z22: < 0.37 kg R&S NRP-Z23: < 0.48 kg R&S NRP-Z24: < 0.63 kg



Hatched area: The maximum surface temperatures permitted to IEC 1010-1 are exceeded. Provide protection against inadvertent contacting or apply only short-term load to the sensor.

Footnotes

Please refer to the R&S NRP data sheet for footnotes not mentioned below. Please keep in mind that the power levels specified there are valid only for the power sensor section. Add +10 dB in the case of the R&S NRP-Z22, +20 dB in the case of the R&S NRP-Z23 or +25 dB in the case of the R&S NRP-Z24 to calculate the power incident on the pad preceding the sensor.

³³) Reading the uncertainty for relative power measurements. The example shows a level step of approx. 14 dB (+16 dBm \rightarrow +30 dBm) at 1.9 GHz and an ambient temperature of 28°C.

- ³⁶) Specifications are based on the assumption that the measurements follow each other so fast (at intervals of not more than 10 s) that the temperature of the pad does not change significantly. With the R&S NRP-Z22, the average power shall not exceed 1 W to be compliant with accuracy specifications for relative power measurements.
- ³⁷) For measurements at even lower levels the influence of zero offset and zero drift must be added to the specifications on an RSS basis. The same applies to noise exceeding a two-sigma value of 0.01 dB.

General specifications

See the R&S NRP data sheet (PD 0757.7023.21), sensors R&S NRP-Z11/-Z21.

Accessories

See the R&S NRP data sheet (PD 0757.7023.21).

Ordering information

Description	Туре	Order No.
Power Sensors		
2 nW to 2W; 10 MHz to 18 GHz	R&S NRP-Z22	1137.7506.02
20 nW to 15 W; 10 MHz to 18 GHz	R&S NRP-Z23	1137.8002.02
60 nW to 30 W; 10 MHz to 18 GHz	R&S NRP-Z24	1137.8502.02

Safety Instructions

This unit has been designed and tested in accordance with the EC Certificate of Conformity and has left the manufacturer's plant in a condition fully complying with safety standards.

To maintain this condition and to ensure safe operation, the user must observe all instructions and warnings given in this operating manual.

Safety-related symbols used on equipment and documentation from R&S:

 The unit may be used only in the operating conditions and positions specified by the manufacturer. Unless otherwise agreed, the following applies to R&S products:

IP degree of protection 2X, pollution severity 2 overvoltage category 2, only for indoor use, altitude max. 2000 m.

The unit may be operated only from supply networks fused with max. 16 A.

Unless specified otherwise in the data sheet, a tolerance of $\pm 10\%$ shall apply to the nominal voltage and of $\pm 5\%$ to the nominal frequency.

For measurements in circuits with voltages V_{rms} > 30 V, suitable measures should be taken to avoid any hazards.

(using, for example, appropriate measuring equipment, fusing, current limiting, electrical separation, insulation).

- 3. If the unit is to be permanently wired, the PE terminal of the unit must first be connected to the PE conductor on site before any other connections are made. Installation and cabling of the unit to be performed only by qualified technical personnel.
- For permanently installed units without built-in fuses, circuit breakers or similar protective devices, the supply circuit must be fused such as to provide suitable protection for the users and equipment.
- Prior to switching on the unit, it must be ensured that the nominal voltage set on the unit matches the nominal voltage of the AC supply network.
 If a different voltage is to be set, the power fuse of the unit may have to be changed accordingly.
- 6. Units of protection class I with disconnectible AC supply cable and appliance connector may be operated only from a power socket with earthing contact and with the PE conductor connected.

7. It is not permissible to interrupt the PE conductor intentionally, neither in the incoming cable nor on the unit itself as this may cause the unit to become electrically hazardous.

Any extension lines or multiple socket outlets used must be checked for compliance with relevant safety standards at regular intervals.

8. If the unit has no power switch for disconnection from the AC supply, the plug of the connecting cable is regarded as the disconnecting device. In such cases it must be ensured that the power plug is easily reachable and accessible at all times (length of connecting cable approx. 2 m). Functional or electronic switches are not suitable for providing disconnection from the AC supply.

If units without power switches are integrated in racks or systems, a disconnecting device must be provided at system level.

9. Applicable local or national safety regulations and rules for the prevention of accidents must be observed in all work performed.

Prior to performing any work on the unit or opening the unit, the latter must be disconnected from the supply network.

Any adjustments, replacements of parts, maintenance or repair may be carried out only by authorized R&S technical personnel.

Only original parts may be used for replacing parts relevant to safety (eg power switches, power transformers, fuses). A safety test must be performed after each replacement of parts relevant to safety.

(visual inspection, PE conductor test, insulationresistance, leakage-current measurement, functional test).

continued overleaf

- Ensure that the connections with information technology equipment comply with IEC950 / EN60950.
- 11. Lithium batteries must not be exposed to high temperatures or fire.

Keep batteries away from children.

If the battery is replaced improperly, there is danger of explosion. Only replace the battery by R&S type (see spare part list).

Lithium batteries are suitable for environmentally-friendly disposal or specialized recycling. Dispose them into appropriate containers, only. Do not short-circuit the battery.

12. Equipment returned or sent in for repair must be packed in the original packing or in packing with electrostatic and mechanical protection.

- Electrostatics via the connectors may damage the equipment. For the safe handling and operation of the equipment, appropriate measures against electrostatics should be implemented.
- 14. The outside of the instrument is suitably cleaned using a soft, lint-free dustcloth. Never use solvents such as thinners, acetone and similar things, as they may damage the front panel labeling or plastic parts.
- 15. Any additional safety instructions given in this manual are also to be observed.

Certified Quality System

Certified Environmental System
ISO 14001
DOS REG NO 1954 UM

Qualitätszertifikat

Sehr geehrter Kunde,

Sie haben sich für den Kauf eines Rohde & Schwarz-Produktes entschieden. Hiermit erhalten Sie ein nach modernsten Fertigungsmethoden hergestelltes Produkt. Es wurde nach den Regeln unseres Qualitätsmanagementsystems entwickelt, gefertigt und geprüft. Das Rohde & Schwarz-Qualitätsmanagementsystem ist u.a. nach ISO 9001 und ISO 14001 zertifiziert.

Certificate of quality

Dear Customer,

You have decided to buy a Rohde & Schwarz product. You are thus assured of receiving a product that is manufactured using the most modern methods available. This product was developed, manufactured and tested in compliance with our quality management system standards. The Rohde & Schwarz quality management system is certified according to standards such as ISO 9001 and ISO 14001.

Certificat de qualité

Cher client,

Vous avez choisi d'acheter un produit Rohde & Schwarz. Vous disposez donc d'un produit fabriqué d'après les méthodes les plus avancées. Le développement, la fabrication et les tests respectent nos normes de gestion qualité. Le système de gestion qualité de Rohde & Schwarz a été homologué, entre autres, conformément aux normes ISO 9001 et ISO 14001.

CE

Certificate No.: 2002-36

This is to certify that:

Equipment type	Stock No.	Designation
NRP	1143.8500.02	Power Meter
NRP-B1 NRP-B2 NRP-B5 NRP-B6	1146.9008.02 1146.8801.02 1146.9608.02 1146.9908.02	Sensor Check Source Second Sensor Input 3rd und 4th Sensor Rear-Panel Sensor
NRP-Z3 NRP-Z4 NRP-Z11 NRP-Z21 NRP-Z22 NRP-Z23 NRP-Z24	1146.7005.02 1146.8001.02 1138.3004.02 1137.6000.02 1137.7506.02 1137.8002.02 1137.8502.02	USB Adapter USB Adapter Average Power Sensor Average Power Sensor Average Power Sensor Average Power Sensor Average Power Sensor
NRP-Z51	1138.0005.02	Thermal Power Sensor

complies with the provisions of the Directive of the Council of the European Union on the approximation of the laws of the Member States

- relating to electrical equipment for use within defined voltage limits (73/23/EEC revised by 93/68/EEC)
- relating to electromagnetic compatibility (89/336/EEC revised by 91/263/EEC, 92/31/EEC, 93/68/EEC)

Conformity is proven by compliance with the following standards:

EN61010-1 : 1993 + A2 : 1995 EN55011 : 1998 + A1 : 1999 EN61326 : 1997 + A1 : 1998 + A2 : 2001

For the assessment of electromagnetic compatibility, the limits of radio interference for Class B equipment as well as the immunity to interference for operation in industry have been used as a basis.

Affixing the EC conformity mark as from 2002

ROHDE & SCHWARZ GmbH & Co. KG Mühldorfstr. 15, D-81671 München Central Quality Management FS-QZ / Becker

Munich, 2003-06-30

Support Center

Telefon / Telephone:

+49 (0)180 512 42 42

Fax:

+49 89 41 29 137 77

E-mail: CustomerSupport@rohde-schwarz.com

Für technische Fragen zu diesem Rohde & Schwarz-Gerät steht Ihnen die Hotline der Rohde & Schwarz Vertriebs-GmbH, Support Center, zur Verfügung.

Unser Team bespricht mit Ihnen Ihre Fragen und sucht Lösungen für Ihre Probleme.

Die Hotline ist Montag bis Freitag von 8.00 bis 17.00 Uhr MEZ besetzt.

Bei Anfragen außerhalb der Geschäftszeiten hinterlassen Sie bitte eine Nachricht oder senden Sie eine Notiz per Fax oder E-Mail. Wir setzen uns dann baldmöglichst mit Ihnen in Verbindung.

Um Ihr Gerät stets auf dem neuesten Stand zu halten, abonnieren Sie bitte Ihren persönlichen Newsletter unter

http://www.rohde-schwarz.com/www/response.nsf/newsletterpreselection.

Sie erhalten dann regelmäßig Informationen über Rohde & Schwarz-Produkte Ihrer Wahl, über Firmware-Erweiterungen, neue Teiber und Applikationsschriften.

Should you have any technical questions concerning this Rohde & Schwarz product, please contact the hotline of Rohde & Schwarz Vertriebs-GmbH, Support Center.

Our hotline team will answer your questions and find solutions to your problems.

You can reach the hotline Monday through Friday from 8:00 until 17:00 CET.

If you need assistance outside office hours, please leave a message or send us a fax or e-mail. We will contact you as soon as possible.

To keep your instrument always up to date, please subscribe to your personal newsletter at

http://www.rohde-schwarz.com/www/response.nsf/newsletterpreselection.

As a subscriber, you will receive information about your selection of Rohde & Schwarz products, about firmware extensions, new drivers and application notes on a regular basis.

FIRMENSITZ/HEADQUARTERS	Phone Fax E-mail	
Rohde & Schwarz GmbH & Co. KG Mühldorfstraße 15 · D-81671 München Postfach 80 14 69 · D-81614 München	+49 (89) 41 29-0 +49 89 4129-121 64 -	
WERKE/PLANTS		
Rohde & Schwarz Messgerätebau GmbH Riedbachstraße 58 · D-87700 Memmingen Postfach 1652 · D-87686 Memmingen	+49 (8331) 108-0 +49 (8331) 108-11 24 -	
Rohde & Schwarz GmbH & Co. KG Werk Teisnach Kaikenrieder Straße 27 · D-94244 Teisnach Postfach 1149 · D-94240 Teisnach	+49 (9923) 857-0 +49 (9923) 857-11 74 -	
Rohde & Schwarz GmbH & Co. KG Dienstleistungszentrum Köln Graf-Zeppelin-Straße 18 · D-51147 Köln in		Albania Algeria
Postfach 98 02 60 · D-51130 Köln servio	ce@rsdc.ronde-schwarz.com	
TOCHTERUNTERNEHMEN/SUBSIDIARIES Rohde & Schwarz Vertriebs-GmbH Mühldorfstraße 15 · D-81671 München	+49 (89) 41 29-137 74 +49 (89) 41 29-137 77	Argentina
Postfach 80 14 69 · D-81614 München	-	Australia
Rohde & Schwarz International GmbH Mühldorfstraße 15 · D-81671 München Postfach 80 14 60 · D-81614 München	+49 (89) 41 29-129 84 +49 (89) 41 29-120 50 -	Australia
Rohde & Schwarz Engineering and Sales GmbH Mühldorfstraße 15 · D-81671 München Postfach 80 14 29 · D-81614 München	+49 (89) 41 29-137 11 +49 (89) 41 29-137 23 -	Austria
R&S BICK Mobilfunk GmbH Fritz-Hahne-Str. 7 · D-31848 Bad Münder Postfach 2062 · D-31844 Bad Münder	+49 (5042) 998-0 +49 (5042) 998-105 -	
Rohde & Schwarz FTK GmbH Wendenschlossstraße 168, Haus 28 D-12557 Berlin	+49 (30) 658 91-122 +49 (30) 655 50-221 -	Azerbaijan
Rohde & Schwarz SIT GmbH Agastraße 3 D-12489 Berlin	+49 (30) 658 84-0 +49 (30) 658 84-183	Baltic Countries
ADRESSEN DEUTSCHLAND/ADDRESSES GERMANY		Bangladesh
Rohde & Schwarz Vertriebs-GmbH Mühldorfstraße 15 · D-81671 München Postfach 80 14 69 · D-81614 München	+49 89 4129-133 74 +4989 4129-133 77 -	
Zweigniederlassungen der Rohde & Schwarz Vertriebs-GmbH/Branch offices of Rohde & Schwarz Vertriebs-GmbH		Belgium
Zweigniederlassung Nord, Geschäftsstelle Berlin Ernst-Reuter-Platz 10 · D-10587 Berlin Postfach 100620 · D-10566 Berlin	+49 (30) 34 79 48-0 +49 (30) 34 79 48 48 -	Brasil
Zweigniederlassung Büro Bonn Josef-Wirmer-Straße 1-3 · D-53123 Bonn Postfach 140264 · D-53057 Bonn	+49 (228) 918 90-0 +49 (228) 25 50 87 -	Brunei
Zweigniederlassung Nord, Geschäftsstelle Hamburg Steilshooper Alle 47 · D-22309 Hamburg Postfach 60 22 40 · D-22232 Hamburg	+49 (40) 63 29 00-0 +49 (40) 630 78 70 -	Bulgaria
Zweigniederlassung Mitte, Geschäftsstelle Köln Niederkasseler Straße 33 · D-51147 Köln Postfach 900 149 · D-51111 Köln	+49 (2203) 807-0 +49 (2203) 807-650 -	Bosnia- Herzegovina

	Zweigniederlassung Süd, Geschäftsstel München Mühldorfstraße 15 · D-81671 München Postfach 80 14 69 · D-81614 München	+49 (89) 40 47 64
	Zweigniederlassung Süd, Geschäftsste Nürnberg Donaustraße 36 D-90451 Nürnberg	lle +49 (911) 642 03-0 +49 (911) 642 03-33 -
	Zweigniederlassung Mitte, Geschäftsst Neu-Isenburg Siemensstraße 20 D-63263 Neu-Isenburg	elle +49 (6102) 20 07-0 +49 (6102) 20 07 12 -
	ADRESSEN WELTWEIT/ADDRESSES WORLDWIDE	
nia	siehe / see Austria	
ria	ROHDE & SCHWARZ Bureau d'Alger 5B Place de Laperrine 16035 Hydra-Alger	+213 (21) 48 20 18 +213 (21) 69 46 08
entina	PRECISION ELECTRONICA S.R.L. Av. Pde Julio A. Roca 710 - 6° Piso (C1067ABP) Buenos Aires a	+541 (14) 331 41 99 +541 (14) 334 51 11 Iberto_lombardi@prec-elec.com.ar
ralia	ROHDE & SCHWARZ (AUSTRALIA) Pty. Sales Support Unit 6 2-8 South Street Rydalmere, N.S.W. 2116	Ltd. +61 (2) 88 45 41 00 +61 (2) 96 38 39 88 lyndell.james@rsaus.rohde- schwarz.com
tria	ROHDE & SCHWARZ-ÖSTERREICH Ges.m.b.H.	+43 (1) 602 61 41-0 +43 (1) 602 61 41-14 office@rsoe.rohde-schwarz.com
	Am Euro Platz 3 Gebäude B 1120 Wien	Unice@isue.funde-schwalz.com
baijan	ROHDE & SCHWARZ Azerbaijan Liaison Office Baku ISR Plaza 340 Nizami Str. 370000 Baku	+994 (12) 93 31 38 +994 (12) 93 03 14 RS-Azerbaijan@RUS.Rohde- Schwarz.com
ic ntries	siehe / see Denmark	
gladesh	BIL Consortium Ltd. Corporation Office House No: 95/A, Block - 'F' Road No. 4, Banani Dhaka-1213	+880 (2) 881 06 53 +880 (2) 882 82 91
ium	ROHDE & SCHWARZ BELGIUM N.V. Excelsiorlaan 31 Bus 1 1930 Zaventem	+32 (2) 721 50 02 +32 (2) 725 09 36 info@rsb.rohde-schwarz.com
il	ROHDE & SCHWARZ DO BRASIL LTDA Av. Alfredo Egidio de Souza Aranha n° 1° andar - Santo Amaro 04726-170 Sao Paulo - SP	
iei	GKL Equipment PTE. Ltd. Jurong Point Post Office P.O.Box 141 Singapore 916405	+65 (6) 276 06 26 +65 (6) 276 06 29 gkleqpt@singnet.com.sg
aria	ROHDE & SCHWARZ ÖSTERREICH Representation Office Bulgaria 39, Fridtjof Nansen Blvd. 1000 Sofia	+359 (2) 963 43 34 +359 (2) 963 21 97 rohdebg@rsoe.rohde-schwarz.com
nia- zegovina	siehe / see Slovenia	

Adressen/Addresses

Canada	ROHDE & SCHWARZ CANADA Inc. 555 March Rd. Kanata, Ontario K2K 2M5	+1 (613) 592 80 00 +1 (613) 592 80 09 cgirwarnauth@rscanada.ca	Denmark	ROHDE & SCHWARZ DANMARK A/S Ejby Industrivej 40 2600 Glostrup	+45 (43) 43 66 99 +45 (43) 43 77 44
Canada	TEKTRONIX CANADA Inc. Test and Measurement 4929 Place Olivia Saint-Laurent, Pq	+1 (514) 331 43 34 +1 (514) 331 59 91	Ecuador	REPRESENTACIONES MANFRED WEINZIERL Vía Láctea No. 4 y Vía Sta. Inés P.O.Box 17-22-20309 1722 Cumbayá-Quito	+593 (22) 89 65 97 +593 (22) 89 65 97 mweinzierl@accessinter.net
	Montreal H4R 2V6		Egypt	U.A.S. Universal Advanced Systems	+20 (2) 455 67 44
Chile	DYMEQ Ltda. Av. Larrain 6666 Santiago	+56 (2) 339 20 00 +56 (2) 339 20 10 dnussbaum@dymeq.com		31 Manshiet El-Bakry Street Heliopolis 11341 Cairo	+20 (2) 256 17 40 an_uas@link.net
China	ROHDE & SCHWARZ China Ltd. Representative Office Shanghai Central Plaza 227 Huangpi North Road RM 807/809 Shanghai 200003	+86 (21) 63 75 00 18 +86 (21) 63 75 91 70	El Salvador Estonia	siehe / see Mexico ROHDE & SCHWARZ DANMARK A/S	+372 (6) 14 31 23
China	ROHDE & SCHWARZ China Ltd. Representative Office Beijing Room 602, Parkview Center	+86 (10) 64 31 28 28 +86 (10) 64 37 98 88 info.rschina@rsbp.rohde-		Estonian Branch Office Narva mnt. 13 10151 Tallinn	+372 (6) 14 31 21 margo.fingling@rsdk.rohde- schwarz.com
	2 Jiangtai Road Chao Yang District Beijing 100016	schwarz.com	Finland	Orbis Oy P.O.Box 15 00421 Helsinski 42	+358 (9) 47 88 30 +358 (9) 53 16 04 info@orbis.fi
China	ROHDE & SCHWARZ China Ltd. Representative Office Guangzhou Room 2903, Metro Plaza 183 Tianhe North Road Guangzhou 510075	+86 (20) 87 55 47 58 +86 (20) 87 55 47 59	France	ROHDE & SCHWARZ FRANCE Immeuble "Le Newton" 9-11, rue Jeanne Braconnier 92366 Meudon La Forêt Cédex	+33 (1) 41 36 10 00 +33 (1) 41 36 11 73
China	ROHDE & SCHWARZ China Ltd. Representative Office Chengdu Unit G, 28/F, First City Plaza 308 Shuncheng Avenue	+86 (28) 86 52 76 05 to 09 +86 (28) 86 52 76 10 rsbpc@mail.sc.cninfo.net	France	Niederlassung/Subsidiary Rennes 37 Rue du Bignon Bât. A F-35510 Cesson Sevigne	+33 (0) 299 51 97 00 +33 (0) 299 51 98 77 -
China	Chengdu 610017 ROHDE & SCHWARZ China Ltd. Unit 3115	+85 (2) 21 68 06 70 +85 (2) 21 68 08 99	France	Niederlassung/Subsidiary Toulouse Technoparc 3 B.P. 501 F-31674 Labège Cédex	+33 (0) 561 39 10 69 +33 (0) 561 39 99 10 -
	31/F Entertainment Building 30 Queen's Road Central Hongkong		France	Aix-en-Provence	+33 (0) 494 07 39 94 +33 (0) 494 07 55 11
China	ROHDE & SCHWARZ China Ltd. Representative Office Xi'an Room 10125, Jianguo Hotel Xi'an No. 2, Huzhu Road	+86 (29) 321 82 33 +86 (29) 329 60 15 sherry.yu@rsbp.rohde-schwarz.com	France	Office Lyon	+33 (0) 478 29 88 10 +33 (0) 478 79 18 57
	Xi'an 710048		France	Office Nancy	+33 (0) 383 54 51 29 +33 (0) 383 54 82 09
China	Shanghai ROHDE & SCHWARZ Communication Technology Co.Ltd. Central Plaza, Unit 809 227 Huangpi North Road Shanghai 200003		Ghana	KOP Engineering Ltd. P.O. Box 11012 3rd Floor Akai House, Osu Accra North	+233 (21) 77 89 13 +233 (21) 701 06 20
China	Beijing ROHDE & SCHWARZ Commur Technology Co.Ltd. Room 106, Parkview Centre No. 2, Jiangtai Road	+86 (10) 64 38 80 80 +86 (10) 64 38 97 06	Greece	MERCURY S.A. 6, Loukianou Str. 10675 Athens	+302 (10) 722 92 13 +302 (10) 721 51 98 mercury@hol.gr
	Chao Yang District Beijing 100016		Guatemala	siehe / see Mexico	
Croatia	siehe / see Slovenia		Honduras	siehe / see Mexico	
Croana	HINIS TELECAST LTD. Agiou Thoma 18 Kiti	+357 (24) 42 51 78 +357 (24) 42 46 21 hinis@logos.cy.net	Hongkong	Electronic Scientific Engineering 36/F Dorset House, Taikoo Place 979 King's Road Quarry Bay Hong Kong	+852 (25) 07 03 33 +852 (25) 07 09 25 stephenchau@ese.com.hk
	Larnaca 7550		Hungary	ROHDE & SCHWARZ	+36 (1) 412 44 60
Czech Republic	ROHDE & SCHWARZ - Praha s.r.o. Hadovka Office Park Evropská 33c 16000 Praha 6	+420 (2) 24 31 12 32 +420 (2) 24 31 70 43 office@rscz.rohde-schwarz.com	rrunyal y	Budapesti Iroda Váci út 169 1138 Budapest	+36 (1) 412 44 60 +36 (1) 412 44 61 rohdehu@rsoe.rohde-schwarz.com
			lceland	siehe / see Denmark	

Adressen/Addresses

India	ROHDE & SCHWARZ India Pvt. Ltd. Bangalore Office No. 24, Service Road, Domlur 2nd Stage Extension Bangalore - 560 071	+91 (80) 535 23 62 +91 (80) 535 03 61 rsindiab@rsnl.net	Kenya	Excel Enterprises Ltd Dunga Road P.O.Box 42 788 Nairobi	+254 (2) 55 80 88 +254 (2) 54 46 79
India	ROHDE & SCHWARZ India Pvt. Ltd. Hyderabad Office 302 & 303, Millenium Centre 6-3-1099/1100, Somajiguda	+91 (40) 23 32 24 16 +91 (40) 23 32 27 32 rsindiah@nd2.dot.net.in	Korea	ROHDE & SCHWARZ Korea Ltd. 83-29 Nonhyun-Dong, Kangnam-Ku Seoul 135-010	+82 (2) 514 45 46 +82 (2) 514 45 49 sales@rskor.rohde-schwarz.com service@rskor.rohde-schwarz.com
India	Hyderabad - 500 016 ROHDE & SCHWARZ India Pvt. Ltd. 244, Okhla Industrial Estate, Phase-III New Delhi 110020	+91 (11) 26 32 63 81 +91 (11) 26 32 63 73 sales@rsindia.rohde-schwarz	Kuwait	Group Five Trading & Contracting Co. Mezanine Floor Al-Bana Towers Ahmad Al Jaber Street Sharq	+965 (244) 91 72/73/74 +965 (244) 95 28 jk_agarwal@yahoo.com
India	ser ROHDE & SCHWARZ India Pvt. Ltd. RS India Mumbai Office B-603, Remi Bizcourt, Shah Industrial Estate, Off Veera Desai Road Mumbai - 400 058	vices@rsindia.rohde-schwarz.com +91 (22) 26 30 18 10 +91 (22) 26 32 63 73 rsindiam@rsnl.net	Latvia Lebanon	ROHDE & SCHWARZ DANMARK A/S Latvian Branch Office Merkela iela 21-301 1050 Riga ROHDE & SCHWARZ Liaison Office	+371 (7) 50 23 55 +371 (7) 50 23 60 rsdk@rsdk.rohde-schwarz.com +966 (1) 465 64 28 Ext. 303
Indonesia	PT ROHDE & SCHWARZ Indonesia Graha Paramita 5th Floor	+62 (21) 252 36 08 +62 (21) 252 36 07 sales@rsbj.rohde-schwarz.com services@rsbj.rohde-schwarz.com	Lebanon	c/o Haji Abdullah Alireza Co. Ltd.	+966 (1) 455 64 28 Ext. 229 hris.porzky@rsd.rohde-schwarz.com
	Jakarta 12940	services@isbj.ronue-scriwarz.com	Liechtenstein	siehe / see Switzerland	
Iran	ROHDE & SCHWARZ IRAN Groundfloor No. 1, 14th Street Khaled Eslamboli (Vozara) Ave. 15117 Tehran	+98 (21) 872 42 96 +98 (21) 871 90 12 rs-tehran@neda.net	Lithuania	ROHDE & SCHWARZ DANMARK A/S Lithuanian Office Lukiskiu 5-228 2600 Vilnius	+370 (5) 239 50 10 +370 (5) 239 50 11
Ireland	siehe / see United Kingdom		Luxembourg	siehe / see Belgium	
Israel	EASTRONICS LTD. Messtechnik / T&M Equipment 11 Rozanis St. P. 0.Box 39300 Tel Aviv 61392	+972 (3) 645 87 77 +972 (3) 645 86 66 david_hasky@easx.co.il	Macedonia Malaysia	siehe / see Slovenia DAGANG TEKNIK SDN. BHD. No. 9, Jalan SS 4D/2 Selangor Darul Ehsan	+60 (3) 27 03 55 68 +60 (3) 27 03 34 39 mey.nara@danik.com.my
Israel	J.M. Moss (Engineering) Ltd. Kommunikationstechnik/ Communicatio Equipment 9 Oded Street P.O.Box 967	+972 (3) 631 20 57 +972 (3) 631 40 58 jmmoss@zahav.net.il	Malta	47301 Petaling Jaya ITEC International Technology Ltd B'Kara Road San Gwann SGN 08	+356 (21) 37 43 00 or 37 43 29 +356 (21) 37 43 53 sales@itec.com.mt
Italy	52109 Ramat Gan ROHDE & SCHWARZ ITALIA S.p.a. Centro Direzionale Lombardo Via Roma 108 20060 Cassina de Pecchi (MI)	+39 (02) 95 70 42 03 +39 (02) 95 30 27 72 ornella.crippa@rsi.rohde- schwarz.com	Mexico	Rohde & Schwarz de Mexico (RSMX) S. de R.L. de C.V. German Centre Oficina 4-2-2 Av. Santa Fé 170 Col. Lomas de Santa Fé 01210 Mexico D.F.	+52 (55) 85 03 99 13 +52 (55) 85 03 99 16 latinoamerica@rsd.rohde- schwarz.com
Italy	ROHDE & SCHWARZ ITALIA S.p.a. Via Tiburtina 1182 00156 Roma	+39 (06) 41 59 82 18 +39 (06) 41 59 82 70	Mexico	Rohde & Schwarz de Mexico (RSMX) Av. Prol. Americas No. 1600, 2° Piso Col. Country Club Guadalajara, Jal.	+52 (33) 36 78 91 70 +52 (33) 36 78 92 00
Japan	ADVANTEST Corporation RS Sales Department 1-32-1, Asahi-cho Nerima-ku Tokyo 179-0071	+81 (3) 39 30 41 90 +81 (3) 39 30 41 86 RSSales@advantest.co.jp	Moldavia Netherlands	Mexico CP, 44610 siehe / see Romania ROHDE & SCHWARZ NEDERLAND B.V	/. +31 (30) 600 17 00
Jordan	Jordan Crown Engineering & Trading Co		Nethenanus	Perkinsbaan 1 3439 ND Nieuwegein	+31 (30) 600 17 99 info@rsn.rohde-schwarz.com
	Jabal Amman, Second Circle Youssef Ezzideen Street P.O.Box 830414 Amman, 11183	+962 (6) 465 96 72 jocrown@go.com.jo	New Zealand	Nichecom 1 Lincoln Ave. Tawa, Wellington	+64 (4) 232 32 33 +64 (4) 232 32 30 rob@nichecom.co.nz
Kazakhstan	ROHDE & SCHWARZ Kazakhstan Representative Office Almaty PI. Respubliki 15 480013 Almaty	+7 (32) 72 63 55 55 +7 (32) 72 63 46 33 RS-Kazakhstan@RUS-Rohde- Schwarz.com	Nicaragua Nigeria	siehe / see Mexico Ferrostaal Abuja Plot 3323, Barada Close P.O.Box 8513, Wuse Off Amazon Street Maitama, Abuja	+234 (9) 413 52 51 +234 (9) 413 52 50 fsabuja@rosecom.net

Adressen/Addresses

Norway	ROHDE & SCHWARZ NORGE AS Enebakkveien 302 B 1188 Oslo	+47 (23) 38 66 00 +47 (23) 38 66 01	Spain	ROHDE & SCHWARZ ESPANA Salcedo, 11
				28034 Madrid
Oman	Mustafa Sultan Science & Industry Co.Ll For Test & Measurement ONLY Way No. 3503 Building No. 241 Postal Code 112 Al Khuwair. Muscat	LC. +968 636 000 +968 607 066 m-aziz@mustafasultan.com	Sri Lanka	LANKA AVIONICS 658/1/1, Negombo Road Mattumagala Ragama
Pakistan	Siemens Pakistan 23, West Jinnah Avenue Islamabad	+92 (51) 227 22 00 +92 (51) 227 54 98 reza.bokhary@siemens.com.pk	Sudan	SolarMan Co. Ltd. P.O.Box 11 545 North of Fraouq Cementry 6/7. Karthoum
Panama	siehe / see Mexico		Sweden	ROHDE & SCHWARZ SVERIGE
Papua-New Guinea	siehe / see Australia			Marketing Div. Flygfältsgatan 15 128 30 Skarpnäck
Philippines	MARCOM INDUSTRIAL EQUIPMENT, Ind 6-L Vernida I Condominium 120 Amorsolo St. Legaspi Village	c. +63 (2) 813 29 31 +63 (2) 810 58 07 marcom@i-next.net	Switzerland	Roschi Rohde & Schwarz AG Mühlestr. 7 3063 Ittigen
	Makati City/ Philippines 1229		Syria	Electro Scientific Office
Poland	ROHDE & SCHWARZ Österreich SP.z o.o. Przedstawicielstwo w Polsce ul. Stawki 2, Pietro 28 r 00-193 Warszawa	. +48 (22) 860 64 94 +48 (22) 860 64 99 rohdepl@rsoe.rohde-schwarz.com		Baghdad Street Dawara Clinical Lab. Bldg P.O.Box 8162 Damascus
Portugal	Rohde & Schwarz Portugal, Lda.	+351 (21) 415 57 00	Taiwan	Lancer Communication Co. Ltd
	Alameda Antonio Sergio, nº 7 R/C, Sala A 2795-023 Linda-a-Velha	+351 (21) 415 57 10 telerus@mail.telepac.pt		for Div. 1 and 7 16F, No. 30, Pei-Ping East Roa Taipei
Romania	ROHDE & SCHWARZ Representation Office Bucharest Str. Uranus 98 Sc. 2, Et. 5, Ap. 36	+40 (21) 410 68 46 +40 (21) 411 20 13 ohdero@rsoe.rohde-schwarz.com	Taiwan	System Communication Co. Lt for Div. 2 and 8 16F, No. 30, Pei-Ping East Roa Taipei
Russian	76102 Bucuresti, Sector 5 ROHDE & SCHWARZ	+7 (095) 745 88 50 to 53	Tanzania	SSTL Group P.O. Box 7512 Dunga Street Plot 343/345
Federation	Representative Office Moscow 119180, Yakimanskaya nab., 2 r: Moscow	+7 (095) 745 88 54 s-russia@rsru.rohde-schwarz.com	Thailand	Dar es Salaam Schmidt Electronics (Thailand)
Saudi Arabia	Mr. Chris Porzky ROHDE & SCHWARZ International Gmbł c/o Haji Abdullah Alireza Co. Ltd. chri P.O.Box 361	+966 (1) 465 64 28 Ext. 303 + +966 (1) 465 6428 Ext. 229 is.porzky@rsd.rohde-schwarz.com		63 Government Housing Bank Tower II, 19th floor, Rama 9 Ro Huaykwang, Bangkapi Bangkok 10320
	Riyadh 11411		Thailand	TPP Operation Co., Ltd. 41/5 Mooban Tarinee
Saudi Arabia	GENTEC			Boromrajchonnee Road Talingchan, Bangkok 10170
Serbia- Montenegro	Representative Office Belgrade Tose Jovanovica 7 11030 Beograd	+381 (11) 305 50 25 +381 (11) 305 50 24	Trinidad &Tobago	siehe / see Mexico
Slovak Republic	Specialne systemy a software, a.s. Svrcia ul. 841 04 Bratislava	+421 (2) 65 42 24 88 +421 (2) 65 42 07 68 stefan.lozek@special.sk		
Slovenia	ROHDE & SCHWARZ Representation Ljubljana Tbilisijska 89 1000 Ljubljana	+386 (1) 423 46 51 +386 (1) 423 46 11 rohdesi@rsoe.rohde-schwarz.com	Tunisia	TELETEK 71, Rue Alain Savary Residence Alain Savary (C64) 1003 Tunis
South Africa	Protea Data Systems (Pty.) Ltd. Communications and Measurement Divis Private Bag X19 Bramley 2018	+27 (11) 719 57 00 +27 (11) 786 58 91 unicm@protea.co.za	Turkey	ROHDE & SCHWARZ Internation Liaison Office Istanbul Bagdad Cad. 191/3, Arda Apt. 81030 Selamicesme-Istanbul
South Africa	Protea Data Systems (Pty.) Ltd. Cape Town Branch Unit G9, Centurion Business Park Bosmandam Road	+27 (21) 555 36 32 +27 (21) 555 42 67 unicm@protea.co.za	Ukraine	ROHDE & SCHWARZ Representative Office Kiev 4, Patris Loumoumba ul 01042 Kiev
	Milnerton Cape Town, 7441		United Arab Emirates	ROHDE & SCHWARZ Internation Liaison Office Abu Dhabi P.O. Box 31156 Abu Dhabi

A S.A. +34 (91) 334 10 70 +34 (91) 329 05 06 rses@rses-rohde-schwarz.com +94 (1) 95 66 78 +94 (1) 95 83 11 lankavio@sltnet.lk +249 (11) 47 31 08 +249 (11) 47 31 38 /7/9 Bldg. 16 solarman29@hotmail.com GE AB +46 (8) 605 19 00 +46 (8) 605 19 80 info@rss.se +41 (31) 922 15 22 +41 (31) 921 81 01 sales@roschi.rohde-schwarz.com +963 (11) 231 59 74 +963 (11) 231 88 75 memo@hamshointl.com +886 (2) 23 91 10 02 +886 (2) 23 95 82 82 .td. info@lancercomm.com.tw bad +886 (2) 23 91 10 02 +886 (2) 23 95 82 82 info@lancercomm.com.tw Ltd. bad +255 (22) 276 00 37 +255 (22) 276 02 93 sstl@twiga.com +66 (2) 643 13 30 to 39 d) Ltd. nk Bldg. +66 (2) 643 13 40 kamthoninthuyot@schmidtthailand.c Rd. om +66 (2) 880 93 47 +66 (2) 880 93 47 thipsukon@tpp-operation.com 4) tional GmbH +90 (216) 385 19 17 +90 (216) 385 19 18 ot. B-Blok rsturk@superonline.com +38 (044) 268 60 55 +38 (044) 268 83 64 rohdeukr@rsoe.rohde-schwarz.com +971 (2) 633 56 70 tional GmbH

Abu Dhabi

+971 (2) 633 56 70 michael.rogler@rsd.rohde-

schwarz.com

United Arab Emirates	ROHDE & SCHWARZ Bick Mobile Communication P.O.Box 17466	+971 (4) 883 71 35 +971 (4) 883 71 36 www.rsbick.de
	Dubai	
United Arab Emirates	ROHDE & SCHWARZ Emirates L.L.C. Ahmed Al Nasri Building, Mezzanine P.O.Box 31156 Off old Airport Road Behind new GEMACO Furniture Abu Dhabi	+971 (2) 631 20 40 Floor, +971 (2) 631 30 40 rsuaeam@emirates.net.ae
United Kingdom	ROHDE & SCHWARZ UK Ltd. Ancells Business Park Fleet Hampshire GU 51 2UZ England	+44 (1252) 81 88 88 (sales) +44 (1252) 81 88 18 (service) +44 (1252) 81 14 47 sales@rsuk.rohde-schwarz.com
Uruguay	AEROMARINE S.A. Cerro Largo 1497 11200 Montevideo	+598 (2) 400 39 62 +598 (2) 401 85 97 mjn@aeromarine.com.uy
USA	ROHDE & SCHWARZ, Inc. Broadcast & Comm. Equipment (US Headquarters) 7150-K Riverwood Drive Columbia, MD 21046	+1 (410) 910 78 00 +1 (410) 910 78 01 rsatv@rsa.rohde-schwarz.com rsacomms@rsa.rohde-schwarz.com
USA	Rohde & Schwarz Inc. Marketing & Support Center / T&M Equipment 2540 SW Alan Blumlein Way M/S 58-925 Beaverton, OR 97077-0001	+1 (503) 627 26 84 +1 (503) 627 25 65 info@rsa.rohde-schwarz.com
USA	Rohde & Schwarz Inc. Systems & EMI Products 8080 Tristar Drive Suite 120 Irving, Texas 75063	+1 (469) 713 53 00 +1 (469) 713 53 01 info@rsa.rohde-schwarz.com
Venezuela	EQUILAB TELECOM C.A. Centro Seguros La Paz Piso 6, Local E-61 Ava. Francisco de Miranda Boleita, Caracas 1070	+58 (2) 12 34 46 26 +58 (2) 122 39 52 05 r_ramirez@equilabtelecom.com
Venezuela	REPRESENTACIONES BOPIC S.A. Calle C-4 Ota. San Jose Urb. Caurimare Caracas 1061	+58 (2) 129 85 21 29 +58 (2) 129 85 39 94 incotr@cantv.net
Vietnam	Schmidt Vietnam Co., (H.K.) Ltd., Representative Office in Hanoi Intern. Technology Centre 8/F, HITC Building 239 Xuan Thuy Road Cau Giay, Tu Liem Hanoi	+84 (4) 834 61 86 +84 (4) 834 61 88 svnhn@schmidtgroup.com
West Indies	siehe / see Mexico	
	GEDIS GmbH	+49 (431) 600 51-0

GEDIS GmbH Sophienblatt 100 Postfach 22 01 24021 Kiel

+49 (431) 600 51-0 +49 (431) 600 51-11 sales@gedis-online.de

Contents

1	Putting into Operation	1.1
	Unpacking the sensor	1.1
	Connecting the sensor	1.1
	Operation with the R&S NRP base unit	1.2
	Connecting the sensor to the R&S NRP base unit	1.2
	Connecting the sensor to the DUT	1.2
	PC control	1.3
	Hardware and software requirements	1.3
	Operation via the Active USB Adapter R&S NRP-Z3	1.5
	Operation via the Passive USB Adapter R&S NRP-Z4	1.6
	Connecting the sensor to the DUT	1.6

Figures

Fig. 1-1	Displaying the total available power of a USB port	1.4
Fig. 1-2	Configuration with Active USB Adapter R&S NRP-Z3	1.5
Fig. 1-3	Changing the primary adapter	1.5
Fig. 1-4	Configuration with Passive USB Adapter R&S NRP-Z4	1.6

Tables

Table 1-1	Sensor operating modes with	corresponding settings in the	Offset dialog 1.3
-----------	-----------------------------	-------------------------------	-------------------

1 Putting into Operation

Follow the instructions below precisely to prevent damage to the sensor – particularly when you are putting it into operation for the first time.

Unpacking the sensor

Remove the sensor from its packing and check that nothing is missing. Inspect all items for damage. If you discover any damage, inform the carrier responsible immediately and keep the packing to support any claims for compensation.

It is also best to use the original packing if the sensor is to be shipped or transported at a later date.

The sensor contains components which can be destroyed by electrostatic discharges. To prevent this happening, never touch the inner conductor of the RF connector and never open the sensor.

Connecting the sensor

To prevent EMI, the sensor must never be operated with its enclosure wholly or partially removed. Only use shielded cables that meet the relevant EMC standards.

Never exceed the maximum RF power limit. Even brief overloads can destroy the sensor.

In many cases, the RF connector only requires manual tightening. However, for maximal measurement accuracy, the RF connector must be tightened using a torque wrench with a nominal torque of 1.36 Nm (12" lbs.).

Operation with the R&S NRP base unit

Connecting the sensor to the R&S NRP base unit

The sensor can be connected to the R&S NRP base unit when it is in operation. The interface connector must be inserted, red marking upwards, into one of the R&S NRP base unit's sensor connectors. When the sensor is connected, it is detected by the R&S NRP base unit and initialized.

Connecting the sensor to the DUT

The Sensor R&S NRP-Z22/-Z23/-Z24 is usually operated in combination with the attenuator supplied with the equipment. (Operation without attenuator or with another connected component is also possible, see Table 1-1 and part 3 of this user manual respectively.) Both the sensor and the attenuator are fitted with a male N connector for connection to all common female N connectors. Using light pressure, and keeping the male N connector perpendicular, insert it into the female N connector and tighten the N connector locking nut (right-hand thread). Connect first the sensor to the attenuator and then screw the male N connector of the attenuator on the DUT.

The test limits specified on the type label apply only if the supplied attenuator is used. For operation without attenuator, lower test limits apply (see data sheet).

Sensor operation	Setting in the Offset dialog
when using the attenuator supplied in the delivery Signal source NRP-Z22/-Z23/-Z24	s-parameter correction activated (automatically after the R&S NRP is switched on or the sensor is plugged in) Offset ABCD - COUD dB Global Table 1 ± Table Edit Table SParameter V
without the attenuator Signal source	s-parameter correction to be switched off (each time the R&S NRP is switched on or the sensor is plugged in) Offset Offse

Table 1-1 Sensor operating modes with corresponding settings in the Offset dialog

PC control

Hardware and software requirements

The following requirements must be met if the sensor is to be controlled by a PC via an interface adapter:

- The PC must have a USB port.
- The PC's operating system must support the USB port. This is the case with Windows[™] 98, Windows[™] ME, Windows[™] 2000, Windows[™] XP and more recent versions of the Windows[™] operating system.
- The USB device drivers in the supplied *NRP Toolkit* software package must be installed.

If these requirements are met, the sensor can be controlled using a suitable application program such as the NrpFlashup program contained in the NRP Toolkit (includes the modules Power Viewer, USB Terminal, Firmware Update and Update S-Parameters).

When you insert the CD-ROM supplied with the R&S NRP, the NRP Toolkit is automatically installed on your PC. The rest of the procedure is self-explanatory.

The sensor can be powered in two ways:

- Self-powered from a separate power supply via the Active USB Adapter R&S NRP-Z3.
- Bus-powered from the PC or a USB hub with its own power supply (self-powered hub) via the Active USB Adapter R&S NRP-Z3 or via the Passive USB Adapter R&S NRP-Z4.

As the sensor is a *high-power device*, there is no guarantee that it can be powered from all types of laptop or notebook in the *bus-powered* mode. To be sure, you should determine the current at the USB connectors beforehand:

- In the Windows[™] start menu, select Settings Control Panel
- Select the System icon
- Select the Hardware tab
- By clicking on the button with that name, start the Device Manager
- Open USB Controller (all USB controllers, hubs and USB devices are listed here)
- Double-click on USB Root Hub or select Properties in the context menu (use the righthand mouse button)
- Select the Power tab (Fig. 1-1). If the hub is self-powered and the total power available is, as indicated by Hub Information, 500 mA per port, high-power devices can be connected.

USB Root Hub Properties		? ×
General Power Driver		
Hub Information		
The hub is self powered.		
Total power available: 500 mA per port.		
Devices on this Hub		
Device Description	Power Required	
HID-compliant mouse	100 mA	_
1 port(s) available.	0 mA	
	<u>R</u> efre	sh
	OK Ca	incel

Fig. 1-1 Displaying the total available power of a USB port

If you have any doubts, ask the manufacturer if the USB port on your laptop or notebook can handle *high-power devices*.

Operation via the Active USB Adapter R&S NRP-Z3

Fig. 1-2 shows the configuration with the Active USB Adapter R&S NRP-Z3, which also makes it possible to feed in a trigger signal for the *Timeslot* and *Scope* modes. The order in which the cables are connected is not critical.

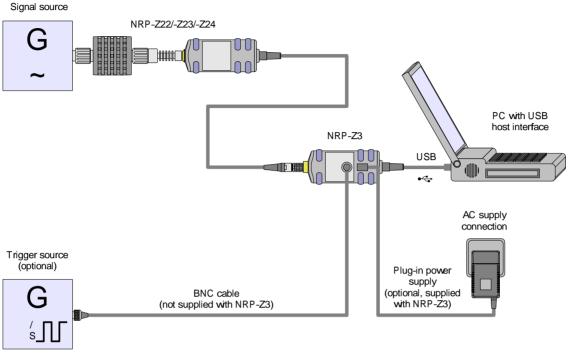


Fig. 1-2 Configuration with Active USB Adapter R&S NRP-Z3

The plug-in power supply for the R&S NRP-Z3 can be powered from a single-phase AC source with a nominal voltage range of 100 V to 240 V and a nominal frequency between 50 Hz and 60 Hz. The plug-in power supply autosets to the applied AC voltage. No manual voltage selection is required.

The plug-in power supply comes with four primary adapters for Europe, the UK, the USA and Australia. No tools of any kind are required to change the primary adapter. The adapter is pulled out manually and another adapter inserted until it locks (Fig. 1-3).

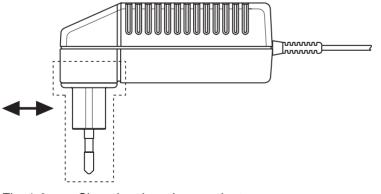


Fig. 1-3 Changing the primary adapter

The plug-in power supply is short-circuit-proof and has an internal fuse. It is not possible to replace this fuse or open the plug-in power supply.

The plug-in power supply is not intended for outdoor use.

Keep within the temperature range of 0°C to 50°C.

If there is any condensation on the plug-in power supply, dry it off before connecting it to the AC supply.

Operation via the Passive USB Adapter R&S NRP-Z4

Fig. 1-4 is a schematic of the measurement setup. The order in which the cables are connected is not critical.

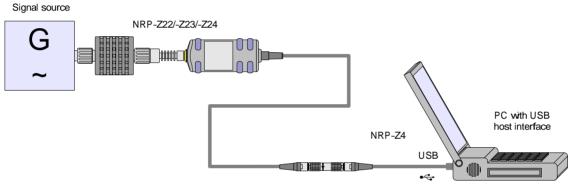


Fig. 1-4 Configuration with Passive USB Adapter R&S NRP-Z4

Connecting the sensor to the DUT

See the section "Operation with the R&S NRP" for information on how to connect the sensor to the DUT.

If the sensor is to be operated without an attenuator, s-parameter correction is to be switched off with the command SENSe:CORRection:SPDevice :STATe OFF (not possible in conjunction with the **Power** Viewer program module).

Table of Contents

2	Virtual Power Meter	1
	Overview	1
	Menus2.	3

Figs.

Fig. 2-1	Power Viewer virtual power meter
0	

Tables

Table 2-1	Virtual power meter keys	2.2
Table 2-2	Virtual power meter entry fields	2.2

2 Virtual Power Meter

You will find the **NrpFlashup** program for controlling sensors with a PC under Windows[™] on the CD-ROM that accompanies the sensor. The program comprises several modules which can be started centrally via the Windows[™] start-menu entry **NRP Toolkit**.

This section describes the **Power Viewer** program module. This is a virtual power meter which only uses a cut-down set of the sensor's functions. This means that after an extremely brief familiarization period, the user can measure the average power of modulated signals.

The other modules in **NrpFlashup** are described in Chapter 3 of the operating manual (**Terminal** and **Update S-Parameters** modules) or in the service manual (**Firmware Update** module).

Overview

Start the virtual power meter using the **NRP Toolkit** – **Power Viewer** start-menu entry. The **Power Viewer** program window is displayed (Fig. 2-1).

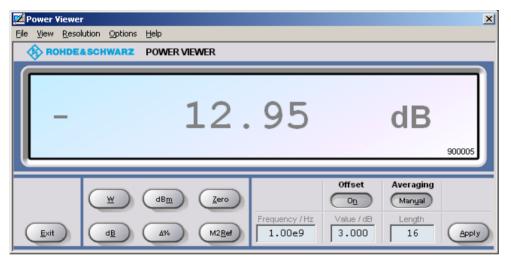


Fig. 2-1 **Power Viewer –** virtual power meter

The result display occupies most of the program window. The result, unit and additional sensor status information are displayed. The serial number of the sensor is displayed in the bottom right. The program window also contains animated buttons and entry fields (see Table 2-1 and Table 2-2).

Button	Function	Key combination
Exit	Terminates the program. The current settings are saved and recalled the next time the program is started.	Alt + E
W	Selects Watt as the display unit.	Alt + W
dBm	Selects dBm as the display unit.	Alt + M
Zero	Zeroes the sensor.	Alt + Z
dB	Selects dB as the display unit. This is the log of the ratio of the measured value to the reference value.	Alt + B
Δ%	Selects % as the display unit. The difference between the measured value and the reference value is expressed as a percentage.	Alt + %
M2Ref	Makes the current measured value the reference value for the relative display units dB and %.	Alt + R
Offset On/Off	Turns the offset correction for the sensor on or off. If the offset correction is Off, the Offset/dB entry field has a grey background.	Alt + N
Averaging Man/Auto	Turns auto-averaging on or off. When auto-averaging is on, the Length entry field has a grey background; the current averaging factor is displayed.	Alt + T
Apply	Accepts edited numerical values in the Frequency/Hz , Value/dB and Length entry fields and transfers them to the sensor.	Alt + A or Enter key

Table 2-1 Virtual power meter keys

Table 2-2 Virtual power meter entry fields

Entry field	Function
Frequency/Hz	Frequency of the RF carrier in Hertz.
Value/dB	Attenuation in dB of the twoport connected to the sensor. The valid range is –100 to 100. The offset correction must be activated beforehand with the Offset On/Off button if this entry field is to be edited.
Length	Length of the averaging filter (= averaging factor). The valid range is 1 to 65536. Averaging must be set to manual with the Averaging Man/Auto button if this entry field is to be edited.

Scientific notation can also be used for the entry fields. If an invalid entry is made, an error message is output. An edited numerical value will not be transferred to the sensor unless you use the **Apply** button or the Enter key to terminate the entry.

Menus

The menu bar can be used to call less frequently used functions.

	can be used to call less frequ	entry used functions.	
File	Start Log	Opens a file-selection dialog of the log file. Clicking the S recording. All displayed valu the log file with the date (for (format: hh:mm:ss.ms). Exan -22.51 dBm (03/02/25	es are written line-by-line to mat: YY/MM/DD) and time mple:
	Stop Log	Ends the log-file recording.	
View	Display Refresh Rate	Opens a dialog box to adjust the display refresh rate. The time in milliseconds between two refresh operations is entered. The default setting is 200 ms.	Display Refresh Rate X 200 ms OK Cancel
	Colours Result Unit Edit Button	 Opens a dialog box to select the result, the unit, the text in the number field the key labelling. 	-
Resolution		For setting the result resolution. If auto- averaging has been selected, a higher resolution leads to a greater averaging factor, which means a longer result settling time.	View Resolution Options Help View 0.001 dB 0.1 dB 1 dB
Options	Read Sensor Status	Reads the current sensor status. A parameter list is output.	Sensor status X SENSe: FFRGuency : 5.000000e+007 SENSe: FORe: XV0: SENSE: FORe: 12.00000e-002 SENSe: CORRection: OFFset: STATe: 1 SENSe: CORRECtion: OFFset: STATe: 2 SENSe: AVE sense: State: 2 SENSe: AVE sense: Constraints: 5.12 SENSe: AVE sense: Constraints: 1 SENSe: AVE sense: Constraints: 2 TRIGe: SIGOPE 2 TRIGe: SIGOPE 1 Image: SIGOPE 1
	Read Error Queue	Reads the error queue. All the error messages that have been issued since the last call are read line- by-line. A tick before this menu entry indicates that an error has occurred.	EFFOR QUALIZE

	Simulation	For trying out the functions of the virtual power meter without actually connecting a sensor. The display alternates between Measurement Value 1 & Measurement Value 2 with a period given by Interval . Simulation can be activated immediately with the Activate check box.	Measurement Simulation ▼ Measurement Value 1: 2.0 W Measurement Value 2: 3.0 W Jitter: 0.1 W Interval: 200 ms
	Reset Sensor	Initializes the sensor. Any pro	evious zeroing remains valid.
Help	Contents	Opens the table of contents	for the online-help facility.
	About	Displays information about the	ne program version used, etc.

Table of Contents

3	Manual Operation	
	Program module "Terminal"	3.1
	Main control elements	
	Menus	
	Program module "Firmware Update"	
	Program module "Update S-Parameters"	
	Fundamentals	
	Procedure	

Figs.

Fig. 3-1	Sending commands using the Input field	3.1
Fig. 3-2	Sending commands using command files	3.2
Fig. 3-3	Dialog window for loading an s-parameter table	3.9
Fig. 3-4	Dialog window for loading the backup file of a calibration data set	.10

Tables

Table 3-1	Buttons assigned to the Input field	3.2
Table 3-2	Buttons assigned to the Command File field	3.2
Table 3-3	Buttons assigned to the Output field	3.3
Table 3-4	Uncertainties of the s-parameter test system (example)	3.7
Table 3-5	Interpolated uncertainties of measurement frequencies for s-parameters (example)	3.8

3 Manual Operation

The previous section describes the Power Viewer program module supplied with the instrument. This module simplifies the most frequently used function of a power meter – measuring the average power of an RF signal of almost any modulation. Other program modules are also part of the supplied equipment and can be selected in the Start menu:

- **Power Viewer**: A detailed description of this virtual power meter module is provided in section 2.
- Terminal: Program module for sending commands and command sequences to the sensor and for displaying measurement results, status information and other data from the sensor
- Firmware Update: Program module for updating the sensor firmware
- Update S-Parameters: Program module for loading an s-parameter table into the sensor

Program module "Terminal"

Main control elements

With the USB terminal, commands and command sequences can be sent to the sensor in two different ways:

- Commands are entered in the **Input** field (Fig. 3-1). Consecutive commands can be entered as separate lines, one below the other. The buttons associated with the **Input** field are described in Table 3-1.
- Commands or command sequences are stored in *command files*. Command files are created with a text editor, for instance, and then stored. They can be called as often as required (Fig. 3-2). The buttons of the **Command File** field are described in Table 3-2.

📮 USB terminal		_ 🗆 🗵
<u>View</u> Options <u>H</u> elp		
Input syst:info? "manufacturer"	Output T;Idx:000;≺Rohde & Sc>;Cmd:(8/ 1) SYSTem:INFo;	
Send Loop Clear A	T;Idx:010; <hwarz>;Cad:(8/1) SYSTem:INFo; R;Errcde:000 NO ERROR;Cmd:(8/1) SYSTem:INFo;</hwarz>	
Command File	×	- -
oĸ	Clear Copy	A

Fig. 3-1 Sending commands using the **Input** field

Yiew Options Help Input Inp	📮 USB terminal	
R.Frrcde:000 N0 ERROR;Cad: (3/10) SINSe:FUNCtion; R;Frrcde:000 N0 ERROR;Cad: (3/9) SINSe:FUNCtion; R;Frrcde:000 N0 ERROR;Cad: (3/9) SINSe:FUNCtion; R;Frrcde:000 N0 ERROR;Cad: (3/4) SINSe:AVERage:COUNt:AUTO; R;Frrcde:000 N0 ERROR;Cad: (3/1) SINSe:AVERage:COUNt; R;Frrcde:000 N0 ERROR;Cad: (4/1) SINSe:AVERage:COUNt; R;Frrcde:000 N0 ERROR;Cad: (4/4) SINSe:POWer:AVC:APERture; R;Frrcde:000 N0 ERROR;Cad: (3/12) SINSe:PANCE:AUTO; R;Frrcde:000 N0 ERROR;Cad: (3/13) SINSe:PANCE:AUTO; R;Frrcde:000 N0 ERROR;Cad: (3/13) SINSe:PANCE:AUTO; R;Frrcde:000 N0 ERROR;Cad: (3/13) INTIate:INHediate; Z;State:003 HEASURING ;Errcde:000 N0 ERROR; Z;State:003 HEASURING ;Errcde:000 N0 ERROR;-2.4819851e-011;+1.2800000e+002;+2.6680000e+003 Z;State:000 IDLE ;Errcde:000 N0 ERROR;	<u>View Options Help</u>	
R;Errcde:000 N0 ERROR;Cad:(3/9) SENSe: FREQuency; R;Errcde:000 N0 ERROR;Cad:(3/4) SENSe: AVERage: COUNT: AUTO; R;Errcde:000 N0 ERROR;Cad:(3/1) SENSe: AVERage: COUNT: AUTO; R;Errcde:000 N0 ERROR;Cad:(3/1) SENSe: AVERage: COUNT: R;Errcde:000 N0 ERROR;Cad:(3/1) SENSe: AVERage: COUNT: R;Errcde:000 N0 ERROR;Cad:(4/4) SENSe: POWer: AVC: APERture; R;Errcde:000 N0 ERROR;Cad:(4/4) SENSe: POWer: AVC: APERture; R;Errcde:000 N0 ERROR;Cad:(3/13) SENSe: RANGE: AUTO; R;Errcde:000 N0 ERROR;Cad:(3/12) SENSe: RANGE: AUTO; R;Errcde:000 N0 ERROR;Cad:(3/12) SENSe: RANGE: R;Errcde:000 N0 ERROR;Cad:(3/12) SENSe: RANGE: R;Errcde:000 N0 ERROR;Cad:(3/12) SENSe: RANGE; R;Errcde:000 N0 ERROR;Cad:(3/12) SENSe: RANGE; R;Errcde:000 N0 ERROR;Cad:(3/12) SENSe: RANGE; R;Errcde:000 N0 ERROR;Cad:(3/12) SENSe: RANGE; R;Errcde:000 N0 ERROR;Cad:(3/13) INITiate: IMHediate; Z;State:002 WAIT_FOR_TROR;TRCd:(00 N0 ERROR; R;Errcde:000 N0 ERROR;Cad:(9/14) INITiate: IMHediate; Z;State:003 MEASURING ;Errcde:000 N0 ERROR;-2.4819851e-011;+1.280000e+002;+2.6680000e+003 Z;State:000 IDLE ;Errcde:000 N0 ERROR; R;Errcde:000 N0 ERROR;Cad:(9/14) ISLOR; R;State:003 IDLE ;Errcde:000 N0 ERROR;-2.4819851e-011;+1.280000e+002;+2.6680000e+003 R;State:000 IDLE ;Errcde:000 N0 ERROR; R;State:000 IDLE ;Errcde:	_Input	Cutput-
<pre>R.Frcde:000 N0 ERROR;Cad:(3/ 4) SENSe:AVERage:STATe; R.Frcde:000 N0 ERROR;Cad:(3/ 1) SENSe:AVERage:COUNt:AUT0; R.Frcde:000 N0 ERROR;Cad:(3/ 1) SENSe:AVERage:COUNt; R.Frcde:000 N0 ERROR;Cad:(3/ 1) SENSe:AVERage:COUNt; R.Frcde:000 N0 ERROR;Cad:(3/ 1) SENSe:AVERage:COUNt; R.Frcde:000 N0 ERROR;Cad:(4/ 4) SENSe:POWer:AVC:APERture; R.Frcde:000 N0 ERROR;Cad:(4/ 4) SENSe:POWer:AVC:SHOothing:STATe; R.Frcde:000 N0 ERROR;Cad:(3/ 12) SENSe:AVERage:COUNt; R.Frcde:000 N0 ERROR;Cad:(3/ 13) SENSe:AVERage:COUNt; R.Frcde:000 N0 ERROR;Cad:(3/ 12) SENSe:POWer:AVC:SHOothing:STATe; R.Frcde:000 N0 ERROR;Cad:(9/ 14) IREGger:SOURce; R:Frcde:000 N0 ERROR;Cad:(9/ 14) IREGger:SOURce; R:Frcde:000 N0 ERROR;Cad:(9/ 3) INTiate:IMEdiate; Z:State:000 N0 ERROR;Cad:(9/ 3) INTiate:IMEdiate; Z:State:003 MEASURINC ;Errcde:000 N0 ERROR; E:State:003 MEASURINC ;Errcde:000 N0 ERROR; Z:State:000 IDLE ;Errcde:000 N0 ERROR; L = Count = Cou</pre>		
B;Errcde:000 N0 ERROR;Cmd: (3/2) SENSe:AVERage:COUNt:AUTO; R;Errcde:000 N0 ERROR;Cmd: (3/1) SENSe:AVERage:COUNt; R;Errcde:000 N0 ERROR;Cmd: (3/1) SENSe:AVERage:COUNt; R;Errcde:000 N0 ERROR;Cmd: (4/1) SENSe:AVERage:COUNt; R;Errcde:000 N0 ERROR;Cmd: (4/4) SENSe:POWer:AVC:APERture; R;Errcde:000 N0 ERROR;Cmd: (3/12) SENSe: PANCE:AUTO; R;Errcde:000 N0 ERROR;Cmd: (3/12) SENSe: PANCE; R;Errcde:000 N0 ERROR;Cmd: (9/7) TRTG/Ger:COUTA; Z;State:000 N0 ERROR;Cmd: (9/7) NTITite: INMediate; Z;State:003 MEASURING ;Errcde:000 N0 ERROR; R;State:003 MEASURING ;Errcde:000 N0 ERROR; R;State:003 MEASURING ;Errcde:000 N0 ERROR; Z;State:000 IDLE ;Errcde:000 N0 ERROR; Z;State:000 IDLE ;Errcde:000 N0 ERROR; Z;State:000 IDLE ;Errcde:000 N0 ERROR;		
R;Errcde:000 N0 ERROR;Cmd; (3/1) SENSe:AVERage:COUNt; R;Errcde:000 N0 ERROR;Cmd; (3/1) SENSe:AVERage:TCOMercl; R;Errcde:000 N0 ERROR;Cmd; (4/1) SENSe:POWer:AVC:SHOuthing:STATe; R;Errcde:000 N0 ERROR;Cmd; (4/4) SENSe:POWer:AVC:SHOuthing:STATe; R;Errcde:000 N0 ERROR;Cmd; (4/4) SENSe:POWer:AVC:SHOuthing:STATe; R;Errcde:000 N0 ERROR;Cmd; (3/1) SENSe:RANGE; R;Errcde:000 N0 ERROR;Cmd; (3/1) TICGer:S0URce; R;Errcde:000 N0 ERROR;Cmd; (3/3) SENSe:RANGE; R;State:003 MEASURING ;Errcde:000 N0 ERROR; E;State:003 MEASURING ;Errcde:000 N0 ERROR; Z;State:000 IDLE ;		
R;Errcde:000 N0 ERROR;Cmd: (4/1) SENSe: POWer:AVG:APERture; R;Errcde:000 N0 ERROR;Cmd: (4/4) SENSe: POWer:AVG:SMOOChing:STATe; R;Errcde:000 N0 ERROR;Cmd: (4/4) SENSe: POWer:AVG:SMOOCHINg:STATe; R;Errcde:000 N0 ERROR;Cmd: (3/12) SENSe: RANCE;AUTO; R;Errcde:000 N0 ERROR;Cmd: (3/12) SENSe: RANCE; R;Errcde:000 N0 ERROR;Cmd: (3/12) SENSe: RANCE; R;Errcde:000 N0 ERROR;Cmd: (9/1) TRIGger: SOURce; R;Errcde:000 N0 ERROR;Cmd: (9/1) TRIGger: COUNC; Z;State:000 N0 ERROR;Cmd: (9/7) TRIGger: COUNC; Z;State:000 N0 ERROR;Cmd: (9/3) IIITiate: IMMediate; Z;State:000 ND ERROR;Encol00 N0 ERROR; R;State:000 IDLE ;Errcde:000 N0 ERROR; Z;State:000 IDLE ;Errcde:000 N0 ERROR; Z;State:000 IDLE ;Errcde:000 N0 ERROR; Z;State:000 IDLE ;Errcde:000 N0 ERROR;		
R;Errcde:000 N0 ERROR;Cmd: (4/ 4) SENSe: POWer:AVG: SMOothing: STATe; R;Errcde:000 N0 ERROR;Cmd: (3/13) SINSe: RANCE; AUTO; R;Errcde:000 N0 ERROR;Cmd: (3/13) SINSe: RANCE; R;Errcde:000 N0 ERROR;Cmd: (3/13) SINSe: RANCE; R;Errcde:000 N0 ERROR;Cmd: (9/14) THICger:SOURce; R;Errcde:000 N0 ERROR;Cmd: (9/17) TRICger:COUNt; Z;State:002 WAIT_FOR_TAG;Errcde:000 N0 ERROR; R;Errcde:000 N0 ERROR;Cmd: (9/ 3) INITiate: IMMediate; Z;State:003 MEASURING ;Errcde:000 N0 ERROR; R;Strcde:000 N0 ERROR;Cmd: (9/ 3) INITiate: IMMediate; Z;State:003 MEASURING ;Errcde:000 N0 ERROR; R;Strcde:000 N0 ERROR;Cmd: (9/ 3) INITiate: IMMediate; Z;State:003 MEASURING ;Errcde:000 N0 ERROR; Z;State:000 IDLE ;Errcde:000 N0 ERROR; Z;State:000 IDLE ;Errcde:000 N0 ERROR;		R;Errcde:000 NO ERROR;Cmd: (3/ 5) SENSe:AVERage:TCONtrol;
R;Errcde:000 N0 ERROR;Cmd:(3/13) SENSe: RANGE: AUTO; R;Errcde:000 N0 ERROR;Cmd:(3/12) SENSe: RANGE: AUTO; R;Errcde:000 N0 ERROR;Cmd:(3/12) SENSe: RANGE; R;Errcde:000 N0 ERROR;Cmd:(3/14) FIEGer: SOURce; R;Errcde:000 N0 ERROR;Cmd:(9/7) TRIGger: COUNt; Z;State:002 WAIT_FOR_TRG;Errcde:000 N0 ERROR; R;Errcde:000 N0 ERROR;Cmd:(9/7) INITiate: IMMediate; Z;State:003 MEASURING ;Errcde:000 N0 ERROR; R;State:003 MEASURING ;Errcde:000 N0 ERROR; R;State:003 MEASURING ;Errcde:000 N0 ERROR; Z;State:003 MEASURING ;Errcde:000 N0 ERROR; Z;State:003 IDLE ;Errcde:000 N0 ERROR; U		R;Brrcde:000 NO ERROR;Cmd: (4/ 1) SENSe:POWer:AVG:APERture;
Send Loop Clear A Command File C:State:000 N0 ERROR;Cad: (3/12) SENSe: RANGE; Command File C:State:000 N0 ERROR;Cad: (9/14) ThIGger: COUNC; C:State:000 N0 ERROR;Cad: (9/17) TRIGger: COUNC; C:State:000 ND ERROR;Cad: (9/17) TRIGger: COUNC; C:State:000 IDLE ;Errcde:000 NO ERROR;		
Send Loop Clear A Command File C:Strrcde:000 NO ERROR;Cmd: (9 / 1) TRIGger: COUNc; C:Strrcde:000 NO ERROR;Cmd: (9 / 2) TRIGger: COUNc; C:Strrcde:000 NO ERROR;Cmd: (9 / 2) TRIGger: COUNc; C:Strrcde:000 NO ERROR;Cmd: (9 / 3) INITiate: INHediate; C:Strrcde:000 NO ERROR;Cmd: (9 / 3) INITiate: INHediate; C:WrpCndFiles/normal.cmd F Sgnd Lgop History Edit F V F		
Send Loop Clear A Command File 2;State:002 WATT_FOR_TRG;Brrcde:000 N0 ERROR; C:WrpCmdFiles\normal.cmd R:Errcde:000 N0 ERROR;Cmd: (9/7) TRIGger:COUNt; Sgnd Loop History Edit		
Command File C:WrpCmdFiles\normal.cmd Sgnd Loop History Edit History Edit	Send Loop Clear A	
Command File C:WrpCmdFiles'normal.cmd Sgnd Lgop History Edit		
Command File C:WrpCndFiles/normal.cnd C:WrpCnd		
C:WrpCmdFilesVnormal.cmd E;State:003 MEASURING ;Errcde:000 NO ERROR;-2.4819851e-011;+1.2800000e+002;+2.6680000e+003 Z;State:000 IDLE ;Errcde:000 NO ERROR;	- Command File	
C:WrpCmdHleshormal.cnd Image: Complexity of the shormal.cnd Send Loop History Edit		
Send Loop History Egit	C:WrpCmdFiles/normal.cmd	
		, , , , , , , , , , , , , , , , , , ,
	Send Loop History Edit	
OK Clear Copy		
OK Clear Copy		
	ок	Clear Copy A

Fig. 3-2 Sending commands using command files

Table 3-1	Buttons assigned to the Input field
-----------	--

Button	Function	Key combination
Send	Sends the content of the Input entry field to the sensor.	Alt + S
Loop	With Loop the command or command sequence is cyclically sent. Pressing the button again terminates the cyclic transmission. The repetition rate is set in a dialog window that can be opened with View - Loop	Alt + L
Clear	Clears the content of the Input field.	Alt + R
Font key	Opens a dialog window where the font for the Input field can be selected.	
Colour key	Opens a dialog window where the background colour of the Input field can be selected.	

Table 3-2 Buttons assigned to the **Command File** field

Button	Function	Key combination
Send	Sends the content of the command file to the sensor.	Alt + E
Loop	With Loop the command or command sequence is cyclically sent. Pressing the button again terminates the cyclic transmission. The repetition rate is set in a dialog window that can be opened with View - Loop	Alt + O
History	Opens a window for editing the command file name in the Command File field.	Alt + H
Edit	Opens the selected command file in the Windows™ text editor.	Alt + D
	Opens a file opening dialog for selecting the command file.	

A command line starting with a tab, a blank or a special character is considered a comment and not forwarded to the sensor.

Measurement results, parameters and status information returned by the sensor are displayed in the **Output** field.

Table 3-3	Buttons	assigned to	the	Output	field
	Dattorio	abbigniba to		- acp ac	

Button	Function	Key combination
Clear	Clears the content of the Output field	Alt + A
Сору	Copies the content of the Output field to the clipboard. (Another possiblity: mark the desired information in the output window with the mouse cursor, press the right mouse key or Ctrl+C and then copy the selected text to the clipboard using the menu item Copy in the opened context menu.)	Alt + Y
Font button	Opens a dialog window where the font for the Output field can be selected.	
Colour button	Opens a dialog window where the background colour of the Output field can be selected.	

Close the USB terminal with OK.

Menus

View Post Filter ...

Opens the **Output Postfilter** dialog window where the lines stored in the input buffer can be filtered according to different criteria.

Output Postfilter			×
 Starting with Containing 	Linecounter 0		
OnlyO Not			
OK	Apply	🔲 Open on Startup	

Filter criteria:

Only + Starting with: Only lines starting with the entered character string are displayed.

Not + Starting with: Only lines not starting with the entered character string are displayed.

Only + Containing: Only lines containing the entered character string are displayed.

Not + Containing: Only lines not containing the entered character string are displayed.

Lines not matching the specific filter criterion are blanked but not cleared.

Filtering is started with **Apply**. The number of lines matching the filter criterion is displayed in the **Linecounter** field. If **Open on startup** is active, the **Output Postfilter** dialog is automatically opened when the terminal is started. The dialog window is closed with **OK**.

ResponseOpens the Response time dialog window where the response time of
the sensor can be set.

Response ti	me			×
Current	230 ms	Inter:	09:29-24	Max
Limit / ms:	200	Max:	230 ms 10:29-24	Min
 Trigger 	on first incoming	response		
C Trigger	on response ma	tching filter setting	s	
ОК		Open on startup)	

Current indicates the time elapsed between dispatch of the last command and receipt of an acknowledgement from the sensor. When the **Max** button is clicked, the response times exceeding the value in the **limit / ms** field are recorded. When the **Min** button is clicked, the response times within the value in the **limit / ms** field are recorded.

If **Trigger on first incoming response** is active, the time measurement is terminated as soon as the first response arrives after a command is sent. If **Trigger on response matching filter settings** is active, the time measurement is terminated as soon as the first response matching the filter criterion in the **Output Postfilter** dialog window is received.

If **Open on startup** is active, the **Response Time** dialog is automatically displayed when the Terminal module is started. The dialog window is closed with **OK**.

Loop ... Opens the Loop controls dialog window where the cyclic transfer of commands and command sequences can be controlled.

In the **Delay / ms** field, the time interval for the cyclic transfer is specified in milliseconds.

The number of completed transfer cycles is displayed in the **Counter** field. If **Open on startup** is active, the **Response time** dialog is automatically opened when the Terminal module is started. The dialog window is closed with **OK**.

Loop controls	×
Delay / ms	Counter
1000	0
🗖 Retrigger after n	esponse
0 Dela	ay after retrigger / ms
ОК Г	Open on startup

- **Options Protocol Mode** In this mode, a time stamp is added to each response block.
 - Hex Mode In this mode, the response blocks from the sensor are displayed in hexadecimal format.
 - Auto Delete With this option active, the Output field is automatically cleared when the Send button is pressed.
 - Auto Scroll With this option active, older items in the **Output** field are automatically shifted upward and off the display if space is required for new values.
 - **LF at EOT** With this option active, a line feed is appended to each response block from the sensor.

- **Delete on Start** With this option active, the **Output** field is automatically cleared when the Terminal module is started.
- Send as Hex With this option active, the text in the Input field is interpreted as a hexadecimal character sequence.
- Advanced ... Opens a dialog window where the buffer size for the **Output** field can be set.

Advcanced options	×
No byte limitation in output panel:	v
Max. number of bytes in output panel:	200000

- **Help Contents** Opens the table of contents for the online help.
 - About Displays information about the program version, etc.

Program module "Firmware Update"

A detailed description of the program module for firmware updates is provided in the Service Manual.

Program module "Update S-Parameters"

Fundamentals

This program module allows you to modify an s-parameter data set located in the data memory of R&S NRP sensors. This s-parameter data set is required in order to automatically account for the influence of a twoport connected ahead of the sensor. In the case of the R&S NRP-Z22/-Z23/-Z24 sensors, the data set contains the s-parameters of the attenuator supplied in the delivery. The program module **Update S-Parameters** can be used to update these values after the attenuator is calibrated or to save another data set – for a separate attenuator or twoport – to the data memory.

The R&S NRP-Z22/-Z23/-Z24 sensors and the attenuator supplied in the delivery are measured separately during calibration. If the attenuator is used, its affect on the result value of the sensor is corrected arithmetically. The set of calibration data in the R&S NRP-Z22/-Z23/-Z24 therefore includes an s-parameter table with up to 1000 measurement frequencies. The real and the imaginary part of each frequency as well as the uncertainty of s-parameters s_{11} , s_{12} , s_{21} and s_{22} can be stored. Since the measurement frequencies in the s-parameter table are independent of the calibration frequencies, they can be set so that the twoport frequency range of interest is optimally covered. The real and the imaginary parts between these measurement frequencies are linearly interpolated, while the more substantial measurement uncertainty at the two neighbouring frequency points is used for calculating the uncertainty of the measurement result. Below the first and above the last measurement frequency, the values of the first and the last measurement frequency are used, respectively.

For maximum measurement sensitivity, the sensor R&S NRP-Z22/-Z23/-Z24 can be operated without a connected attenuator. In this case, the s-parameter correction must be deactivated.

Moreover, with the sensor R&S NRP-Z22/-Z23/-Z24 the influence of any twoport connected to the input on the measurement result can be corrected by way of calculation. A precondition is that a complete set of s-parameters of the twoport is available in the frequency range in question. The calibration data set comes factory-set with the s-parameters of the supplied attenuator; the s-parameter correction is activated as standard.

To ensure compatibility with a great number of network analyzers, the program module **Update S**-**Parameters** can process measurement data files in S2P format. All standard frequency units (Hz, kHz, MHz, GHz) and display formats (real and imaginary part, linear magnitude and phase, magnitude in dB and phase) are supported. The only restriction is that a reference impedance of 50 Ω must be used for the s-parameters. Additional noise parameters in the measurement data file are ignored. Structure of the S2P measurement data file:

1. The *option line* has the following format:

[<frequency unit>] [<parameter>] [<format>] [<R n>]

identifies the option line.

The <frequency unit> may be Hz, kHz, MHz or GHz. If a frequency unit is not specified, GHz is implicitly assumed.

If a parameter is specified, S must be used in <parameter> for s-parameter files. If a parameter is not specified, S is implicitly assumed.

The <format> may be MA (linear magnitude and phase in degree), DB (magnitude in dB, phase in degree) or RI (real and imaginary part). If a format is not specified, MA is implicitly assumed. R is optional and followed by the reference impedance in Ω . If an entry is made for R, R50 must

be specified. If no entry is made, R50 is implicitly assumed.

The option line should therefore read:

[HZ | KHZ | MHZ | GHZ] [S] [MA | DB | RI] [R 50]

2. The measurement frequencies in ascending order are specified as follows:

 $f_i \ s_{11}(f_i) \ s_{21}(f_i) \ s_{12}(f_i) \ s_{22}(f_i),$

where $s_{ik}(f_i)$ is the display format as specified in the option line:

$ s_{jk}(f_i) $ arg $s_{jk}(f_i)$	(display format for linear magnitude and phase in degree) or
$20 \cdot \lg s_{jk}(f_i) \operatorname{arg} s_{jk}(f_i)$	(display format for magnitude in dB and phase in degree)
$\operatorname{Re}\left[s_{jk}(f_{i})\right] \operatorname{Im}\left[s_{jk}(f_{i})\right]$	(display format for real and imaginary part)

3. Comments: Any line starting with an exclamation mark (!) is interpreted as a comment line.

To characterize the measurement uncertainty of the s-parameter test system, another data file can optionally be created. Without this file, the measurement uncertainty cannot be correctly calculated in the sensor. The syntax of the uncertainty data file is similar to that of the S2P data file but U is specified as <Parameter> in the option line so that the option line reads # Hz U for frequencies in Hz.

The measurement frequencies must not be identical to those of the S2P measurement data files. In most cases a few entries will be sufficient to characterize the measurement uncertainty of the sparameter test system. An s-parameter uncertainty as high as that of the neighbouring measurement frequencies of the uncertainty data file is then selected. If different values are available, the higher one is chosen. This is illustrated in the example below:

Table 3-4	Uncertainties of the s-parameter test system (example)
-----------	--

f in GHz	unc [<i>s_{ik}(f)</i>]
0.1	0.01
1.0	0.01
1.1	0.005
10.0	0.005
10.1	0.01
40.0	0.01

f in GHz	unc [<i>s_{ik}(f)</i>]
0.9	0.01
0.95	0.01
1.0	0.01
1.05	0.01
1.1	0.005
1.15	0.005
1.2	0.005

Table 3-5Interpolated uncertainties of measurement frequencies for s-parameters (example)

At 1.05 GHz, the higher uncertainty of the two adjacent 1.0 GHz and 1.1 GHz measurement frequencies is entered in the s-parameter table. If an uncertainty of 0.005 is desired for all frequencies above 1.0 GHz, the first measurement frequency in the uncertainty data file must above 1.0 GHz, e.g. 1.000001 GHz.

Structure of the uncertainty data file:

1. The option line has the following format:

[<frequency unit>] <parameter> [<format>] [<R n>]

identifies the option line.

The <frequency unit> may be Hz, kHz, MHz or GHz. If a frequency unit is not specified, GHz is implicitly assumed.

U must be specified for <parameter> in uncertainty data files. If a parameter is not specified, S is implicitly assumed and as a result an error message is triggered.

<format> is ignored in uncertainty measurement files; the entry is therefore irrelevant.

R is optional and followed by the reference impedance in Ω . If an entry is made for R, R50 must be specified. If no entry is made, R50 is implicitly assumed.

The option line should therefore read:

[HZ | KHZ | MHZ | GHZ] U [MA | DB | RI] [R 50]

2. Measurement frequencies in ascending order are specified in the following form:

 f_i unc $[s_{11}(f_i)]$ unc $[s_{21}(f_i)]$ unc $[s_{12}(f_i)]$ unc $[s_{22}(f_i)]$.

The s-parameters uncertainties are forwarded as follows:

- as extended absolute uncertainties (k = 2) for the magnitude of reflection parameters s_{11} and s_{22} , for instance 0.015,
- as extended uncertainties (k = 2) in dB for the magnitude of transmission parameters s_{21} and s_{12} , for instance 0.015.

3. Comments: Any line starting with an exclamation mark (!) is interpreted as a comment line.

Two additional values must be specified when the s-parameters are loaded: the lower and the upper nominal measurement limit of the sensor-twoport combination. If s-parameter correction is active, these values are transferred by the sensor in response to SYSTem:INFO? The values cannot always be derived from the lower or upper measurement limit of the sensor alone and from the loss or gain of the preconnected twoport. The upper measurement limit of the sensor-twoport combination may also be limited by the twoport's maximum power-handling capacity. Furthermore, the lower measurement limit may be raised not only by the loss but also by the inherent noise of the twoport. For this reason, NrpFlashup allows these values to be entered.

The upper nominal measurement limit of the sensor-twoport combination entered when loading the s-parameters should be carefully specified, as automatic test systems may evaluate it and an incorrect value may cause the sensor and/or the twoport to be overloaded.

Procedure

To load an s-parameter table into the calibration set of the sensor, proceed as follows:

- 1. Connect the sensor to the USB port of the PC and start NrpFlashup.
- 2. Activate **Update S-Parameters** in the menu. The corresponding dialog window is opened (Fig. 3-3).
- 3. Under **S-Parameter File** enter the search path and the name of the S2P file containing the parameters. Press the **Browse**... button to open a file-opening dialog where the S2P measurement data file can be easily selected.
- 4. Under **Uncertainty File** enter the search path and the name of the measurement uncertainty file containing the measurement uncertainty of the s-parameter test system. Press the **Browse**... button to open a file-opening dialog where the measurement uncertainty file can be easily selected.
- 5. Enter the upper and lower nominal measurement limit of the sensor-twoport combination in the Lower Power Limit and Upper Power Limit fields.
- 6. Enter a name for the loaded s-parameter set in the **S-Parameter Device Mnemonic** field. This name can later be queried with SYSTem:INFO? "SPD Mnemonic" and is displayed on the NRP base unit when s-parameter correction is switched on.
- 7. Activate **S-Parameter Correction on by Default** if the *SENSe:CORRection:TRANsmission* switch should be automatically set to *ON* when the sensor is put into operation.
- 8. Press **Start** for loading. (The dialog is closed with **OK** and the set parameters are retained. When the dialog is exited with **Cancel**, all parameter modifications are ignored.)

Update S-Parameters Help	
S-Parameter File	
C:\S2PFiles\ATT3DB_1.S2P	▼ Bro <u>w</u> se
Uncertainty File	
C:\S2PFiles\Uncertainty.s2p	▼ Brows <u>e</u>
Nominal Power Limits of Sensor/2-Port Combination Lower [W] Lower [W] D.4	r [W]
	Parameter Correction ctive by <u>D</u> efault
<u>Start</u>	<u>R</u> estore

Fig. 3-3 Dialog window for loading an s-parameter table

During loading, the current calibration data set of the sensor is overwritten. To be on the safe side, a backup copy of the current calibration data set is therefore automatically stored before s-parameters are loaded. The names of the backup files have the structure <batch number>_<date>time>.bak, where <batch number> is the batch number of the sensor, <date> the date of the s-parameter update in yymmdd format and <time> the time of the s-parameter update in the format hhmmss.

Store the automatically created backup files on a separate data medium (e.g. diskette, CD-ROM or network drive) and, if required, assign a meaningful name to them to simplify reloading. With the aid of these files, a previously used calibration data set of the sensor can be restored.

To reload the backup file of a calibration data set into the sensor, proceed as follows:

- Press the Restore... button. The Restore S-Parameters window is opened (Fig. 3-4).
- Enter the search path and the name of the backup file in the **Backup File** field. Press the **Browse**... button to open a dialog where the backup file can be easily selected.
- Press **OK** to start the restore procedure. (With **Cancel** the dialog window is exited without data being restored).

Restore S-Parame	ers	×
Backup File		
Calibration.bak		▼ Browse
OK	Cancel	

Fig. 3-4 Dialog window for loading the backup file of a calibration data set

Table of Contents

5	Remote Control – Fundamentals	
-		

5 Remote Control – Fundamentals

Rohde & Schwarz recommends to utilize the VXI Plug & Play Driver for the remote control of R&S NRP power sensors. This driver can be found on the CD-ROM supplied with the sensor or downloaded in its most recent version via the internet (http://rohde-schwarz.com/).

The old remote control interface provided by the *Dynamic Link Library NrpControl.dll* is not developed further, but remains on the CD-ROM and can be downloaded via the internet.

Table of Contents

6	Remote Control – Commands	6.1
	Notation	6.1
	Commands as per IEEE 488.2	6.2
	*IDN? – IDentification Query	6.2
	*RST – Reset	6.2
	*TRG – Trigger	6.2
	*TST? – Self Test Query	6.2
	SCPI Commands	6.3
	CALibration	6.3
	CALibration:DATA[?] <calibration as="" block="" data="" definite="" length="" set=""></calibration>	6.3
	CALibration:DATA:LENGth?	6.3
	CALibration:ZERO:AUTO[?] OFF ON ONCE	6.4
	SENSe (Sensor Configuration)	6.5
	SENSe:AVERage:COUNt[?] 1 to 65536	6.7
	SENSe:AVERage:COUNt:AUTO[?] OFF ON ONCE	6.7
	SENSe:AVERage:COUNt:AUTO:MTIMe[?] 1.0 to 999.99	6.8
	SENSe:AVERage:COUNt:AUTO:NSRatio[?] 0.0001 to 1.0	6.8
	SENSe:AVERage:COUNt:AUTO:RESolution[?] 1 to 4	6.8
	SENSe:AVERage:COUNt:AUTO:SLOT[?] 1 to <sense:power:tslot:avg:count></sense:power:tslot:avg:count>	6.8
	SENSe:AVERage:COUNt:AUTO:TYPE[?] RESolution NSRatio	6.9
	SENSe:AVERage:RESet	6.9
	SENSe:AVERage:STATe[?] OFF ON	
	SENSe:AVERage:TCONtrol[?] MOVing REPeat	6.9
	SENSe:CORRection:DCYCle[?] 0.001 to 99.999	
	SENSe:CORRection:DCYCle:STATe[?] OFF ON	
	SENSe:CORRection:OFFSet[?] -200.0 to 200.0	6.10
	SENSe:CORRection:OFFSet:STATe[?] OFF ON	6.10
	SENSe:CORRection:SPDev:STATe[?] OFF ON	6.11
	SENSe:FREQuency[?] 10.0e6 to 18.0e9	6.11
	SENSe:FUNCtion[?] <sensor_function></sensor_function>	
	SENSe:POWer:AVG:APERture[?] 0.0001 to 0.3	
	SENSe:POWer:AVG:BUFFer:SIZE[?] 1 to 1024	
	SENSe:POWer:AVG:BUFFer:STATe[?] OFF ON	
	SENSe:POWer:AVG:SMOothing:STATe[?] OFF ON	
	SENSe:POWer:BURSt:DTOLerance[?] 0.0 to 0.003	
	SENSe:POWer:TSLot:AVG:COUNt[?] 1 to 128	
	SENSe:POWer:TSLot:AVG:WIDTh[?] 0.0001 to 0.1	
	SENSe:RANGe[?] 0 to 2	
	SENSe:RANGe:AUTO[?] OFF ON	
	SENSe:RANGe:AUTO:CLEVel[?] –20.0 to 0.0	
	SENSe:SAMPling[?] FREQ1 FREQ2	
	SENSe:SGAMma:CORRection:STATe[?] OFF ON	6.16

SENSe:SGAMma:MAGNitude[?] 0.0 to 1.0	6.17
SENSe:SGAMma:PHASe[?] -360.0 to 360.0	6.17
SENSe:TRACe:AVERage:COUNt[?] 1 to 65536	6.17
SENSe:TRACe:AVERage:COUNt:AUTO[?] OFF ON ONCE	6.17
SENSe:TRACe:AVERage:COUNt:AUTO:MTIMe[?] 1.0 to 999.99	6.18
SENSe:TRACe:AVERage:COUNt:AUTO:NSRatio[?] 0.0001 to 1.0	6.18
SENSe:TRACe:AVERage:COUNt:AUTO:RESolution[?] 1 to 4	6.18
SENSe:TRACe:AVERage:COUNt:AUTO:POINt[?] 1 to <sense:trace:p< td=""><td>OINts>6.18</td></sense:trace:p<>	OINts>6.18
SENSe:TRACe:AVERage:COUNt:AUTO:TYPE[?] RESolution NSRatio	6.19
SENSe:TRACe:AVERage:STATe[?] OFF ON	6.19
SENSe:TRACe:AVERage:TCONtrol[?] MOVing REPeat	6.19
SENSe:TRACe:MPWidth?	6.19
SENSe:TRACe:OFFSet:TIME[?] - (<trigger:delay> + 0.005) to 100.0</trigger:delay>	6.20
SENSe:TRACe:POINts[?] 1 to 1024	6.20
SENSe:TRACe:REALtime[?] OFF ON	6.20
SENSe:TRACe:TIME[?] 0.0001 to 0.3	6.20
SENSe:TIMing:EXCLude:STARt[?] 0.0 to 0.1	6.20
SENSe:TIMing:EXCLude:STOP[?] 0.0 to 0.003	6.21
SYSTem	6.22
SYSTem:INFO? [Item]	6.22
SYSTem:INITialize	6.24
SYSTem:MINPower?	6.24
SYSTem:TRANsaction:BEGin	6.24
SYSTem:TRANsaction:END	6.24
TEST	6.25
TEST:SENSor?	
TRIGger	
ABORt	
INITiate:CONTinuous[?] OFF ON	
INITiate:IMMediate	
TRIGger:ATRigger:STATe[?] OFF ON	
TRIGger:COUNt[?] 1 to 2×10^9	
TRIGger:DELay[?] x to 100.0	
TRIGger:DELay:AUTO[?] OFF ON	6.28
TRIGger:HOLDoff[?] 0.0 to 10.0	
TRIGger:HYSTeresis[?] 0.0 to 10.0	
TRIGger:IMMediate	
TRIGger:LEVel[?] x to y	
TRIGger:SLOPe[?] POSitive NEGative	
TRIGger:SOURce[?] BUS EXTernal HOLD IMMediate INTernal	6.30
List of Remote-Control Commands	6.31

Figs.

Fig. 6-1	Effect of SENSe:POWer:BURSt:DTOLerance	.6.15
Fig. 6-2	Effect of SENSe:TIMing:EXCLude:STARt and :END in the Burst Average mode	.6.21
Fig. 6-3	Effect of SENSe:TIMing:EXCLude:STARt and :END in the Timeslot mode	.6.21

Tables

Table 6-1	Commands of the CALibration system	6.3
Table 6-2	Commands of the SENSe system	6.5
Table 6-3	Measurement modes	6.12
Table 6-4	Optimum selection of the sampling window size (N = 1, 2, 3,)	6.13
Table 6-5	Commands of the SYSTem system	6.22
Table 6-6	Meaning of Item in the SYSTem:INFO? command	6.22
Table 6-7	Commands of the TEST system	6.25
Table 6-8	Commands of the TRIGger system	6.26
Table 6-9	List of remote-control commands	6.31

6 Remote Control – Commands

Notation

In the following sections, all commands implemented in the sensor are first listed in a table according to command systems and are then described in detail. The notation is largely in line with the SCPI standard.

Command tables For a quick overview of available commands, the commands are listed in a table before they are described. These tables contain the following four columns:

	Command: Parameters: Unit: Remarks:	Commands and their tree structure. Possible parameters. The base unit of the physical parameters (must not be sent with parameters). Identification of all commands • that have no query form • that are available as query only		
Indentations	indentations to	vels of the SCPI command hierarchy are shown in the table by the right. The lower the level, the greater the indentation to the right. ated that the complete notation of the command includes the higher		
	Example: SENSe:AVERa SENSe :AVERage :COUNt	<i>nge:COUNt</i> is represented in the table as follows: first level second level third level		
		I description, the command is shown in full length. An example of the ven at the end of the description.		
[?] ?	A question mark in square brackets at the end of a command indicates that this command can either be used as a setting command (without question mark) or as a query (with question mark). If the question mark is not in square brackets, the command is a query only.			
		r:AVG:APERture[?] r:AVG:APERture 1e-3 sets the length of the sampling window to		
Special	*IDN? Queries this reason, this	<i>c:AVG:APERture?</i> Returns the currently set length as a response. the sensor identification string that of course cannot be changed. For s command is only available as a query. etween parameters is used to separate alternative options (OR link).		
characters for parameters		nuous OFF ON OFF or ON can be entered.		
{numeric expression}	A numeric exp integral value.	ression in braces means that it has been rounded to the nearest		
<parameter> <variable></variable></parameter>	A parameter or	a variable in triangular brackets expresses its current value.		

Commands as per IEEE 488.2

The sensor supports a subset of the possible setting commands and queries (*Common Commands and Queries*) in line with IEEE 488.2.

*IDN? - IDentification Query

**IDN*? returns a string with information on the sensor's identity (device identification code). In addition, the version number of the installed firmware is indicated. The string for a sensor of type R&S NRP-Z23 has the following structure:

ROHDE&SCHWARZ,NRP-Z23,<serial number>,<firmware version>

<serial number>: Serial number in ASCII <firmware version>: Firmware version number in ASCII

*RST – Reset

*RST sets the sensor to the default state, i.e. the default settings for all test parameters are loaded.

*TRG – Trigger

**TRG* triggers a measurement. For this purpose, the sensor is in the *WAIT_FOR_TRIGGER* state and the source for the trigger event is set to *BUS* (*TRIGger:SOURce BUS*).

***TST?** – Self Test Query

**TST*? starts a selftest and returns 0 (no error found) or 1 (an error has occurred). The selftest comprises the following functions:

- RAM test
- Operating voltages
- Temperature measurement
- Calibration data set
- Noise
- Zero-point offsets.

SCPI Commands

The sensors R&S NRP-Z22/-Z23/-Z24 are controlled via the groups of commands

- CALibration (zeroing)
- SENSe (measurement configurations)
- SYSTem
- TRIGger
- SERVice.

CALibration

Table 6-1 Commands of the CALibra

Command	Parameter	Unit	Remarks
CALibration			
:DATA[?]	<calibration as="" block="" data="" definite="" length="" set=""></calibration>		
:LENGth?		Bytes	Query only
:ZERO			
:AUTO[?]	OFF ON ONCE		

CALibration:DATA[?] <calibration data set as *definite length block*>

CALibration:DATA is used for writing a calibration data set in the flash memory of the sensor.

The query yields the calibration data set currently stored in the flash memory as a *definite length block*.

CALibration:DATA:LENGth?

CALibration:DATA:LENGth? yields the length in bytes of the calibration data set currently stored in the flash memory. Programs that read out the calibration data set can use this information to determine the capacity of the buffer memory required.

CALibration:ZERO:AUTO[?] OFF | ON | ONCE

The commands CALibration:ZERO:AUTO ON and CALibration:ZERO:AUTO ONCE zeroes the three measurement paths of the sensor. For this purpose, the test signal must be deactivated or the sensor disconnected from the signal source. The sensor automatically detects the presence of any significant power to be measured. This causes zeroing to be aborted and error message NRPERROR_CALZERO to be output. The CALibration:ZERO:AUTO OFF is ignored. Zeroing takes four seconds at a minimum, but at least as long as the selected averaging filter needs for settling (only fixed-filter mode).

Repeat zeroing

- during warm-up after switching on or connecting the instrument
- after a substantial variation of the ambient temperature
- after fastening the sensor to an RF connector at high temperature
- after several hours of operation
- when very low-power signals are to be measured, e.g. less than 10 dB above the lower measurement limit.

For zeroing switch off the test signal and do not remove the sensor from the signal source. Apart from keeping the thermal balance, this has the advantage that the noise superimposed on the test signal (e.g. from a broadband amplifier) can be detected on zeroing and does not impair the measurement result.

The query always yields 1 (= OFF).

Default setting

After a power-on reset, the zero offsets determined during the last calibration are used until the first zeroing. Therefore, very slight zero offsets are to be expected with a warmed up sensor. Initialization by means of **RST* or *SYSTem:INITialize* has no influence on the current zero offsets.

SENSe (Sensor Configuration) The sensor is configured by means of the commands of the groups *SENSe* and *TRIGger*.

Table 6-2	Commands of the SENSe system
-----------	------------------------------

Command	Parameter	Unit	Remarks
SENSe			
:AVERage			
:RESet			No query
:STATe[?]	OFF ON		
:TCONtrol[?]	MOVing REPeat		
:COUNt[?]	1 to 65536		
:AUTO[?]	OFF ON ONCE		
:TYPE[?]	RESolution NSRatio		
:MTIMe[?]	1.0 to 999.99	s	
:NSRatio[?]	0.0001 to 1.0	dB	
:RESolution[?]	1 to 4		
:SLOT[?]	1 to <sense:power:tslot:avg:count></sense:power:tslot:avg:count>		
:CORRection			
:OFFSet[?]	-200.0 to 200.0	dB	
:STATe[?]	OFF to ON		
:DCYCle[?]	0.001 to 99.999	%	
:STATe[?]	OFF to ON		
:SPDevice:STATe[?]	OFF to ON		
:FREQuency[?]	10.0e6 to 18.0e9	Hz	
:FUNCtion[?]	"POWer:AVG" "POWer:TSLot:AVG" "POWer:BURSt:AVG" "XTIME:POWer"		
:POWer			
:AVG			
:APERture[?]	1.0e-6 to 0.3	S	
:BUFFer			
:STATe[?]	OFF ON		
:SIZE[?]	1 to 1024		

Command	Parameter	Unit	Remarks
:SMOothing:STATe[?]	OFF ON		
:BURSt:DTOLerance[?]	0.0 to 3.0e-3	s	
:TSLot:AVG			
:COUNt[?]	1 to 128		
:WIDTh[?]	10e-6 to 100e-3	s	
:RANGe [?]	0 to 2		
:AUTO[?]	OFF ON		
:CLEVel[?]	0.0 to 20.0	dB	
:SAMPling[?]	FREQ1 FREQ2		
:SGAMma			
:CORRection:STATe[?]	OFF ON		
:MAGNitude[?]	0.0 to 1.0		
:PHASe[?]	-360.0 to 360.0	degree	
:TRACe			
:AVERage			
:STATe[?]	OFF ON		
:TCONtrol[?]	MOVing REPeat		
:COUNt[?]	1 to 65536		
:AUTO[?]	OFF ON ONCE		
TYPE[?]	RESolution NSRatio		
:MTIMe[?]	1.0 to 999.99	s	
:NSRatio[?]	0.0001 to 1.0	dB	
:RESolution[?]	1 to 4		
:POINt[?]	1 to <sense:trace:points></sense:trace:points>		
:MPWidth?		s	Query only
:OFFSet:TIME[?]	- (<trigger:delay> + 0.005) to 100.0</trigger:delay>	s	
:POINts[?]	1 to 1024		
:REALtime[?]	OFF ON		

Command	Parameter	Unit	Remarks
:TIME[?]	0.0001 to 0.3		
:TIMing			
:EXCLude			
:STARt[?]	0.0 to 3.0e-3	s	
:STOP[?]	0.0 to 3.0e-3	s	

SENSe:AVERage:COUNt[?] 1 to 65536

SENSe:AVERage:COUNt sets the number of measured values that have to be averaged for forming the measurement result in the modes Continuous Average, Burst Average and Timeslot. The higher this averaging factor, the less the measured values fluctuate and the longer the measurement time lasts. The parameter is rounded off to the nearest power-of-two number.

The query yields the averaging factor used in the modes *Continuous Average*, *Burst Average* and *Timeslot*.

The averaging function must be activated with SENSe:AVERage:STATe ON so that the set averaging factor becomes effective.

Default setting: 4

SENSe:AVERage:COUNt:AUTO[?] OFF | ON | ONCE

SENSe:AVERage:COUNt:AUTO activates (auto-averaging) or deactivates (fixed-filter mode) automatic determination of the averaging factor in the modes *Continuous Average*, *Burst Average* and *Timeslot*. If auto-averaging is activated, the averaging factor is continuously determined and set depending on the level of power and other parameters.

SENSe:AVERage:COUNt:AUTO ON activates auto-averaging and SENSe:AVERage:COUNt :AUTO OFF deactivates it. On deactivation, the previous, automatically determined averaging factor is used in the fixed-filter mode. The SENSe:AVERage:COUNt:AUTO ONCE command ensures that a new averaging factor is determined by the filter automatic function under the current measurement conditions and used in the fixed-filter mode.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: OFF

SENSe:AVERage:COUNt:AUTO:MTIMe[?] 1.0 to 999.99

SENSe: AVERage: COUNt: AUTO: MTIMe sets the settling time upper limit of the averaging filter in the auto-averaging mode for the Continuous Average, Burst Average and Timeslot modes and limits the length of the filter.

The query yields the current settling time upper limit of the averaging filter in the auto-averaging mode for the *Continuous Average*, *Burst Average* and *Timeslot* modes.

Default setting: 30.0 [s]

SENSe:AVERage:COUNt:AUTO:NSRatio[?] 0.0001 to 1.0

SENSe:AVERage:COUNt:AUTO:NSRatio determines the relative noise component in the measurement result for the *Continuous Average*, *Burst Average* and *Timeslot* modes if auto-averaging is operated in the corresponding mode (SENSe:AVERage:COUNt:AUTO:TYPE NSRatio). The noise component is defined as the magnitude of the level variation in dB caused by the inherent noise of the sensor (two standard deviations).

The query yields the relative noise component in the result for the *Continuous Average*, *Burst Average* or *Timeslot* modes.

Default setting: 0.01 [dB]

SENSe:AVERage:COUNt:AUTO:RESolution[?] 1 to 4

SENSe:AVERage:COUNt:AUTO:RESolution sets the resolution index for the automatic averaging filter in the Continuous Average, Burst Average and Timeslot modes if it is operated in the RESolution mode. The resolution index equals the number of decimal places that have to be taken into account for the further processing of the measurement result in dBm, dBµV or dB. The normal mode is designed in a similar manner as for the predecessors R&S NRVS and R&S NRVD or other commercial power meters. The higher the selected index, the better the measurement result is filtered without the last significant place (0.01 dB with an index of 3) actually being set. The NSRatio setting is recommended instead.

The query yields the resolution index for the Continuous Average, Burst Average and Timeslot modes.

Default setting: 3

SENSe:AVERage:COUNt:AUTO:SLOT[?] 1 to <SENSe:POWer:TSLot:AVG:COUNt>

SENSe:AVERage:COUNt:AUTO:SLOT defines the timeslot, whose power is referenced by auto-averaging in the *Timeslot* mode. The timeslot is addressed via its number, the counting beginning with 1. The timeslot number must not exceed the number of the currently set timeslots. If a valid timeslot number is initially set and then the number of timeslots reduced to a value that is smaller than the initial timeslot number, the initial value is automatically set to the new timeslot number, i.e. auto-averaging references the most recent timeslot.

The query yields the number of the current timeslot, whose power is referenced by auto-averaging in the *Timeslot* mode.

Default setting: 1

SENSe:AVERage:COUNt:AUTO:TYPE[?] RESolution | NSRatio

SENSe:AVERage:COUNt:AUTO:TYPE defines the automatic averaging filter mode in the Continuous Average, Burst Average and Timeslot modes. The RESolution parameter sets the mode usual for power meters; NSRatio predefines the compliance to an exactly defined noise component.

The query yields

- 1 for RESolution,
- 2 for NSRatio.

Default setting: RESolution

SENSe:AVERage:RESet

SENSe:AVERage:RESet initializes the averaging filter for the Continuous Average, Burst Average or Timeslot modes. This is useful if a high averaging factor is set in the SENSe:AVERage :TCONtrol MOVing filter mode and if the power to be measured has significantly decreased since the previous measurement, e.g. by several powers of ten. In this case, previous measurement results still contained in the averaging filter strongly affect the settling of the display; as a result, the advantage of the SENSe:AVERage:TCONtrol MOVing filter mode, i.e. the ability to detect trends in the measurement result while the measurement is still in progress, is lost. The SENSe:AVERage:RESet command solves this problem by deleting all previous measurement results that the averaging filter contains. After initialization, the filter length gradually increases from 1 to its nominal value SENSe:AVERage:COUNt, so that trends in the measurement result become quickly apparent. However, this procedure does not shorten the measurement time required in order for the averaging filter to settle completely.

SENSe:AVERage:STATe[?] OFF | ON

SENSe: A VERage: STATe switches on or off the averaging filter for the Continuous Average, Burst Average and Timeslot modes.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: ON

SENSe:AVERage:TCONtrol[?] MOVing | REPeat

SENSe:AVERage:TCONtrol (terminal control) defines the behaviour of the averaging filter in the *Continuous Average, Burst Average* and *Timeslot* modes. As soon as a new measured value is shifted to the FIR filter, a new average value is available at the filter output, which is obtained from the new measured value and the other values stored in the filter.

The *MOVing* parameter defines that each new average value is output as a measurement result. This allows tendencies in the result to be recognized during the measurement procedure.

The *REPeat* parameter defines that a new result is output after the FIR filter has been filled with new measured values. This ensures that no redundant information is output.

The query yields

- 1 for *MOVing*,
- 2 for REPeat.

Default setting: *MOVing*

SENSe:CORRection:DCYCle[?] 0.001 to 99.999

SENSe:CORRection:DCYCle sets the duty cycle to a percent value for the correction of pulsemodulated signals. With the correction activated, the sensor calculates the signal pulse power from this value and the mean power. Since the duty cycle is only useful in the *Continuous Average* mode, it is evaluated only there.

The query yields the current duty cycle in percent.

Default setting: 1.0 [%]

SENSe:CORRection:DCYCle:STATe[?] OFF | ON

SENSe:CORRection:DCYCle:STATe ON activates the duty cycle correction and thus the pulse-power measurement whereas SENSe:CORRection:DCYCle:STATe OFF deactivates it.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: OFF

SENSe:CORRection:OFFSet[?] -200.0 to 200.0

SENSe:CORRection:OFFSet defines a fixed offset in dB, which is used to correct the measured value. (When a log scale is used, the offset is added to the measured value; this is the reason why the command has this name.)

The attenuation of an attenuator located ahead of the sensor or the coupling attenuation of a directional coupler is taken into account with a positive offset, i.e. the sensor calculates the power at the input of the attenuator or directional coupler. A negative offset can be used to correct the influence of a gain connected ahead.

The query yields the set offset in dB.

Default setting: 0.0 [dB]

SENSe:CORRection:OFFSet:STATe[?] OFF | ON

SENSe:CORRection:OFFSet:STATe ON activates the offset correction and SENSe:CORRection:OFFSet:STATe OFF deactivates it.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: OFF

SENSe:CORRection:SPDev:STATe[?] OFF | ON

SENSe:CORRection:SPDevice:STATe ON activates the s-parameter data set for a component (attenuator, directional coupler) connected ahead of the sensor. Parameter OFF deactivates it.

The use of s-parameters instead of a fixed offset (see group of commands *SENSe:CORRection* :*OFFSet*) allows more precise measurements, since the interactions between the sensor, the source and components connected between them can be taken into account. (For detailed information on loading s-parameter data sets, refer to section 3.) The attenuator supplied with the sensor comes with a factory-set s-parameter data set. If the sensor is operated without a connected component, this parameter must be set to *OFF*.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting:

The factory-set default setting of the sensor is *OFF*. On loading a different s-parameter table, the default setting can be redefined (see section 3).

SENSe:FREQuency[?] 10.0e6 to 18.0e9

SENSe:FREQuency transfers the carrier frequency of the RF signal to be measured; this frequency is used for the frequency-response correction of the measurement result. The center frequency is set for broadband signals (*spread-spectrum* signals, multicarrier signals).

The query yields the set carrier frequency in Hz.

Default setting: 50.0e6 [Hz]

SENSe:FUNCtion[?] <sensor_function>

SENSe:FUNCtion <sensor_function> sets the sensor to one of the following measurement modes:

Table 6-3 Measur	ement modes
------------------	-------------

<sensor_function></sensor_function>	Description of the measurement mode
"POWer:AVG"	Continuous Average After occurrence of the trigger event, the mean power is measured in a time interval (sampling window) whose width is defined with SENSe:POWer:AVG:APERture. The single measurements are performed in pairs to obtain a more accurate measurement result by differentiation. With the averaging function activated, this operation is repeated the number of times specified by the averaging factor. With the averaging function activated, the actual measurement time is thus 2 × <sense:average:count> <sense:power:avg:aperture> and with deactivated averaging function 2 × <sense:power:avg:aperture>. Trigger events start one or several measurements in the Continuous Average mode (depending on the TRIGger:COUNt parameter).</sense:power:avg:aperture></sense:power:avg:aperture></sense:average:count>
"POWer:TSLot:AVG"	Timeslot The power is measured in a defined number of consecutive timeslots. Up to 128 timeslots have the same width, which is defined by SENSe:POWer:TSLot :WIDTh. Their quantity is defined by SENSe:POWer:TSLot:COUNt. The measurement result is an array, which contains as many elements as timeslots. Each element represents the average power in one of the timeslots. After each occurrence of the trigger event, a measurement is performed in all timeslots. The single measurements are also performed in pairs in this mode to obtain a more accurate measurement result by differentiation. With the averaging function activated, this operation is repeated the number of times specified by the averaging factor. With the averaging function activated, the actual measurement time is thus 2 × <sense:average:count> <sense:power:tslot:avg:width> and with deactivated averaging function 2 × <sense:power:tslot:avg:width>. Note that a corresponding number of trigger events must be available.</sense:power:tslot:avg:width></sense:power:tslot:avg:width></sense:average:count>
"POWer:BURSt:AVG"	Burst Average This mode is used for the measurement of the average power of repetitive single bursts, for example. The time interval (integration time) in which the average power is measured is not predefined. Instead, a special algorithm detects the beginning and end of the burst and ensures the synchronization of the sampling window. However, the user must define the dropout tolerance, a time criterion for detecting the pulse or burst end, using SENSe:POWer:BURSt:DTOLerance. In the Burst Average mode, external trigger events (irrespective of the setting of the TRIGger:SOURce parameter) and the TRIGger:DELay parameter are ignored.
"XTIMe:POWer"	Scope The Scope mode is similar to the Timeslot mode. Since, however, up to 1024 consecutive timeslots (called "points" here) are possible, the maximum averaging factor is limited to 8192 due to the storage capacity. In the Scope mode, other limits than in the Timeslot mode apply to the timeslot width. SENSe:TRACe:REALtime ON optimizes the time resolution. The differentiation and averaging filter are ignored.

Time intervals that are excluded from the measurement can be set at the beginning and the end of the sampling window or timeslot in the measurement modes *Burst Average* and *Timeslot*. (*SENSe:TIMing:EXCLude:STARt* and *-:STOP*).

The query yields

- 1 for "POWer:AVG",
- 2 for "POWer:TSLot:AVG",
- 4 for "POWer:BURSt:AVG",
- 8 for "XTIMe:POWer".

Default setting: "POWer:AVG"

SENSe:POWer:AVG:APERture[?] 0.0001 to 0.3

SENSe:POWer:AVG:APERture defines the time interval (sampling window) for the Continuous Average mode: measured values are continuously recorded in this interval. In manual operation, the default setting of 20 ms in conjunction with the activated smoothing (see SENSe: POWer: AVG: SMOothing: STATe) is sufficient in most cases. Another value, which is normally higher, is required when the measurement result shows variations due to modulation. Especially with low-frequency modulation, it is useful to adapt the size of the sampling window exactly to the modulation period, which yields an optimum stable display.

Table 6-4 Optimum selection of the sampling window size (N = 1, 2, 3, ...)

Smoothing	Optimum sampling window size
OFF	N \times modulation period / 2
ON	$N \times modulation \ period \times 2$

The theoretically shortest measurement time can then be obtained only with smoothing deactivated. As the number of modulation periods that fit into a sampling window increases, the issue of whether N is an integer becomes more critical. With smoothing activated, approx. 5 periods are sufficient to reduce variations due to modulation to an acceptable extent; variations are no longer perceptible with more than 9 periods. With smoothing deactivated, the situation is significantly unfavourable. In this case, 5 instead of 300 periods are required and the variations completely disappear as of 3000 periods.

The query yields the currently set width of the sampling window in seconds.

Default setting: 0.02 [s]

SENSe:POWer:AVG:BUFFer:SIZE[?] 1 to 1024

SENSe:POWer:AVG:BUFFer:SIZE sets the buffer size for the buffered Continuous Average mode.

The query yields the current buffer size for the buffered *Continuous Average* mode.

Default setting: 1

SENSe:POWer:AVG:BUFFer:STATe[?] OFF | ON

The buffered *Continuous Average* mode is activated with *ON* and deactivated with *OFF*. In this mode, the results generated by trigger events are collected in the sensor until the buffer is filled. All results are then transferred as block data. The measurement rate obtained is thus higher than in the non-buffered *Continuous Average* mode. The maximum measurement rate is obtained by combining the buffered mode with multiple triggering (see parameter *TRIGger:COUNt*). The size of the result buffer is set with the *SENSe:POWer:AVG:BUFFer:SIZe* command.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: OFF

SENSe:POWer:AVG:SMOothing:STATe[?] OFF | ON

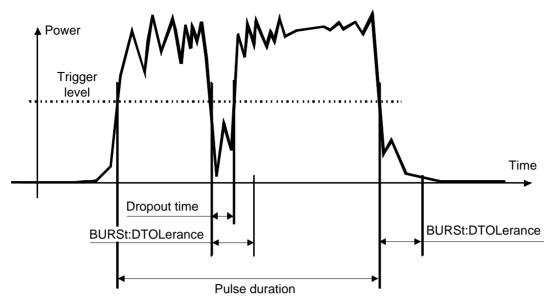
The *ON* parameter activates a smoothing filter for modulated signals in the *Continuous Average* mode and *OFF* deactivates it. The smoothing filter is a steep-edge digital lowpass filter used to suppress variations of results caused by low-frequency modulation. This parameter should be activated to reduce variations in results due to modulation when the size of the sampling window cannot or should not be exactly adapted to the modulation period. If the selected sampling window is 5 to 9 times larger than a modulation period, the variations in display are normally sufficiently reduced. With smoothing deactivated, 300 to 3000 periods are required to obtain the same effect.

With smoothing deactivated, the sampling values are considered equivalent and averaged in a sampling window, which yields an integrating behaviour of the measuring instrument. As described above, optimum suppression of variations in the result is thus obtained when the size of the sampling window is exactly adapted to the modulation period. Otherwise, the modulation can have a considerable influence, even if the sampling window is much larger than the modulation period. The behaviour can be considerably improved by subjecting sampling values to weighting (raised-von-Hann window), which corresponds to video filtering. This is exactly what happens with activated smoothing.

Since the smoothing filter increases the inherent noise of the sensor by approx. 20%, it should remain deactivated if it is not required.

The query yields

- 1 for OFF,
- 2 for ON.


Default setting: ON


SENSe:POWer:BURSt:DTOLerance[?] 0.0 to 0.003

SENSe:POWer:BURSt:DTOLerance defines the dropout tolerance, a parameter for reliably detecting the burst end in the *Burst Average* mode with modulated signals (e. g. with digital standards NADC, PDC, PHS, etc.). The dropout tolerance should be selected larger than the longest amplitude drop and smaller than the gap between two consecutive bursts. The default value is sufficient for all usual digital communication standards.

The query yields the dropout tolerance for the *Burst Average* mode.

Default setting: 0.0001 [s]

SENSe:POWer:TSLot:AVG:COUNt[?] 1 to 128

For the Timeslot mode, *SENSe:POWer:TSLot:AVG:COUNt* sets the number of consecutive timeslots that are to be processed after each trigger event.

The query yields the number of consecutive timeslots.

Default setting: 1

SENSe:POWer:TSLot:AVG:WIDTh[?] 0.0001 to 0.1

SENSe:POWer:TSLot:AVG:WIDTh sets the length of a timeslot in seconds for the Timeslot mode.

The query yields the length of a timeslot in seconds for the Timeslot mode.

Default setting: 0.001 [s]

SENSe:RANGe[?] 0 to 2

SENSe:RANGe selects the measurement path of the sensor. The sensor has three separate measurement paths. Path 1 is the most sensitive, path 2 medium and path 3 the least sensitive. SENSe:RANGe 0 selects path 1, SENSe:RANGe 1 path 2 and SENSe:RANGe 2 path 3.

The dynamic ranges of these measurement paths depend on temperature and are model-specific. Reference values are 40 μ W(-14 dBm) for the most sensitive measurement path, 4 mW (6 dBm) for the medium one and 400 mW (26 dBm) for the least sensitive. These values refer to the sensor without a connected attenuator. If the supplied attenuator is used, these dynamic range limits shift upwards as follows: +10 dB with the NRP-Z22, +20 dB with the NRP-Z23 and +25 dB with the NRP-Z24.

The query yields

- 0 for path 1,
- 1 for path 2,
- 2 for path 3.

If the measurement path is selected manually (*SENSe:RANGe:AUTO OFF*), the currently selected measurement path is output. With automatic selection, the last path that was set manually is output. It is therefore immediately reset after deactivating the automatic function.

Default setting: 2 (least sensitive path)

SENSe:RANGe:AUTO[?] OFF | ON

SENSe:RANGe:AUTO ON activates the automatic selection of the measurement path and SENSe:RANGe:AUTO OFF deactivates it.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: ON

SENSe:RANGe:AUTO:CLEVel[?] -20.0 to 0.0

SENSe:RANGe:AUTO:CLEVel is used to reduce the transition range between measurement paths 1 and 2 or 2 and 3 by the indicated value (in dB). This can improve the measurement accuracy for signals with a high *peak-to-average* ratio, since the headroom for modulation peaks becomes larger. The disadvantage is that the S/N ratio is reduced at the lower limits of the transition ranges.

The query yields the offset of transition ranges between measurement channels 1 and 2 or 2 and 3.

Default setting: 0.0 [dB]

SENSe:SAMPling[?] FREQ1 | FREQ2

SENSe:SAMPling is used to vary the sampling frequency of the analog-digital converter in the sensor. With parameter specification *FREQ1* the sampling frequency is 133.400 kHz, and 119.467 kHz with parameter *FREQ2*. This is provided to suppress interfering low-frequency mixture products from signal components and the sampling frequency.

The query yields

- 1 for FREQ1,
- 2 for FREQ2.

Default setting: FREQ1

SENSe:SGAMma:CORRection:STATe[?] OFF | ON

SENSe:SGAMma:CORRection:STATe ON initiates the use of the complex reflection coefficient of the source defined with SENSe:SGAMma:MAGNitude and SENSe:SGAMma:PHASe for the correction of interactions between the sensor, the source and the components connected between them (see SENSe:CORRection:SPDevice:STATe). This compensates for the source mismatch, which often largely contributes to measurement uncertainty.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: OFF

SENSe:SGAMma:MAGNitude[?] 0.0 to 1.0

SENSe:SGAMma:MAGNitude defines the magnitude of the complex reflection coefficient of the source. A value of *0.0* corresponds to an ideal matched source and a value of 1.0 to total reflection.

The query yields the set magnitude.

Default setting: 0.0

SENSe:SGAMma:PHASe[?] -360.0 to 360.0

SENSe:SGAMma:MAGNitude defines the phase angle (in degrees) of the complex reflection coefficient of the source.

The query yields the set phase angle.

Default setting: 0.0 [°]

SENSe:TRACe:AVERage:COUNt[?] 1 to 65536

SENSe:TRACe:AVERage:COUNt is used to set the number of measured values to be averaged in the Scope mode for the formation of the measurement result. The higher this averaging factor, the lesser the fluctuation the measured values and the longer the measurement time. The parameter is rounded off to the next power-of-two number.

The query yields the averaging factor used in the Scope mode.

The averaging function must be activated with SENSe:TRACe:AVERage:STATe ON so that the set averaging factor becomes effective.

Default setting: 4

SENSe:TRACe:AVERage:COUNt:AUTO[?] OFF | ON | ONCE

SENSe:SWep:AVERage:COUNt:AUTO activates (auto-averaging) or deactivates (fixed-filter mode) the automatic determination of the averaging factor in the *Scope* mode. If auto-averaging is activated, the averaging factor is continuously determined and set depending on the level of power and other parameters.

SENSe:TRACe:AVERage:COUNt:AUTO ON activates auto-averaging and SENSe:TRACe :AVERage:COUNt:AUTO OFF deactivates it. When deactivation occurs, the previous, automatically determined averaging factor is used in the fixed-filter mode. The SENSe:TRACe:AVERage :COUNt:AUTO ONCE command ensures that a new averaging factor is determined by the filter automatic function under the current measurement conditions and that this factor is used in the fixed-filter mode.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: OFF

SENSe:TRACe:AVERage:COUNt:AUTO:MTIMe[?] 1.0 to 999.99

SENSe:TRACe:AVERage:COUNt:AUTO:MTIMe sets the settling time upper limit of the averaging filter in the auto-averaging mode for the Scope mode and limits the length of the filter.

The query yields the current settling time upper limit of the averaging filter in the auto-averaging mode for the *Scope* mode.

Default setting: 30.0 [s]

SENSe:TRACe:AVERage:COUNt:AUTO:NSRatio[?] 0.0001 to 1.0

SENSe:TRACe:AVERage:COUNt:AUTO:NSRatio determines the relative noise component in the measurement result for the Scope mode if auto-averaging is operated in the corresponding mode (SENSe:TRACe:AVERage:COUNt:AUTO:TYPE NSRatio). The noise component is defined as the magnitude of the level variation in dB caused by the inherent noise of the sensor (two standard deviations).

The query yields the relative noise component in the measurement result in the Scope mode.

Default setting: 0.01 [dB]

SENSe:TRACe:AVERage:COUNt:AUTO:RESolution[?] 1 to 4

SENSe:TRACe:AVERage:COUNt:AUTO:RESolution sets the resolution index for the automatic averaging filter in the *Scope* mode when it is operated in the *RESolution* mode. The resolution index is equal to the number of decimal places that have to be taken into account for the further processing of the measurement result in dBm, dBµV or dB. Thus, the design of the normal mode is similar to that for the predecessors R&S NRVS and R&S NRVD or other commercial power meters. The higher the selected index, the better the measurement result is filtered without the last significant place (0.01 dB with an index of 3) being actually set. The NSRatio setting is recommended instead.

The query yields the resolution index for the *Scope* mode.

Default setting: 3

SENSe:TRACe:AVERage:COUNt:AUTO:POINt[?] 1 to <SENSe:TRACe:POINts>

SENSe:TRACe:AVERage:COUNt:AUTO:SLOT defines the "point" whose power is referenced by auto-averaging in the Scope mode. The "point" is addressed via its number, the counting beginning with 1. The "point" number must not exceed the number of the currently set "points". If a valid "point" number is initially set and then the number of "points" reduced to a value that is smaller than the initial "point" number, the initial value is automatically set to the new "point" number, i.e. auto-averaging references the most recent "point".

The query yields the number of the current "point" whose power is referenced by auto-averaging in the *Scope* mode.

Default setting: 1

SENSe:TRACe:AVERage:COUNt:AUTO:TYPE[?] RESolution | NSRatio

SENSe:TRACe:AVERage:COUNt:AUTO:TYPE defines the mode of the automatic averaging filter in the Scope mode. The RESolution parameter sets the mode usual for power meters; NSRatio predefines the compliance to an exactly defined noise component.

The query yields

- 1 for RESolution,
- 2 for NSRatio.

Default setting: RESolution

SENSe:TRACe:AVERage:STATe[?] OFF | ON

SENSe:TRACe:AVERage:STATe switches the averaging filter on or off for the Scope mode.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: ON

SENSe:TRACe:AVERage:TCONtrol[?] MOVing | REPeat

SENSe:TRACe:AVERage:TCONtrol (terminal control) defines the behaviour of the averaging filter in the Scope mode. As soon as a new measured value is shifted to the FIR filter, a new mean is available at the filter output, which is obtained from the new measured value and the other values stored in the filter.

The *MOVing* parameter defines that each new average value is output as a measurement result. This allows trends in the result to be recognized during the measurement procedure.

The *REPeat* parameter defines that a new result is output after the FIR filter has been filled with new measured values. This ensures that no redundant information is output.

The query yields

- 1 for MOVing,
- 2 for REPeat.

Default setting: *MOVing*

SENSe:TRACe:MPWidth?

SENSe:TRACe:MPWidth? provides the *minimum point width* for the Scope mode, i.e. time resolution in seconds is determined as a function of the *TRIGger:SOURce* parameter while taking into consideration how the sensor operates. The display may be incorrect if

<SENSe:TRACe:POINts> × <SENSe:TRACe:MPWidth> < SENSe:TRACE:TIME>

One way to prevent this is to decrease the number of points of the Scope measurement sequence.

SENSe:TRACe:OFFSet:TIME[?] - (<TRIGger:DELay> + 0.005) to 100.0

This command is used to shift the timeslot for measured-data acquisition along the time axis in the *Scope* mode without modifying the value of *TRIGger:DELay*. Positive values yield an additional delay and negative values a correspondingly earlier measured-data acquisition.

The query yields the set time in seconds.

Default setting: 0.0 [s]

SENSe:TRACe:POINts[?] 1 to 1024

This command defines the time resolution of the measurement result. Each "point" represents a time interval whose duration is obtained from the length of the timeslot (command *SENSe:TRACe:TIME*) divided by the number of "points". The measurement result for a "point" equals the average power over the associated time interval.

The query yields the number of set "points".

Default setting: 100

SENSe:TRACe:REALtime[?] OFF | ON

SENSe:TRACe:REALtime ON suppresses the measured-value acquisition in pairs so that single operations can be recorded in this setting. Since the averaging filter of the sensor is not used, SENSe:AVERage:STATe is ignored, but is not affected.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: OFF

SENSe:TRACe:TIME[?] 0.0001 to 0.3

SENSe:TRACe:TIME sets the duration of the timeslot in the Scope mode. This timeslot is divided into a number of equal intervals, in which the average power is determined. The number of intervals equals the number of test points, which is set with the command SENSe:TRACe:POINts.

The query yields the duration of the timeslot in the *Scope* mode (in s).

Default setting: 0.01 [s]

SENSe:TIMing:EXCLude:STARt[?] 0.0 to 0.1

SENSe:TIMing:EXClude:STARt defines the exclusion time at the beginning of the measurement window in the Burst Average (Fig. 6-2) and Timeslot (Fig. 6-3) modes.

The query yields the exclusion time at the beginning of the measurement window.

Default setting: 0.0 [s]

SENSe:TIMing:EXCLude:STOP[?] 0.0 to 0.003

SENSe:TIMing:EXClude:STOP defines the exclusion time at the end of the measurement window in the Burst Average (Fig. 6-2) and Timeslot (Fig. 6-3) modes.

The query yields the exclusion time at the end of the measurement window.

Default setting: 0.0 [s]

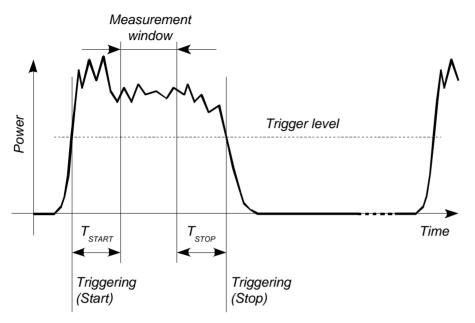
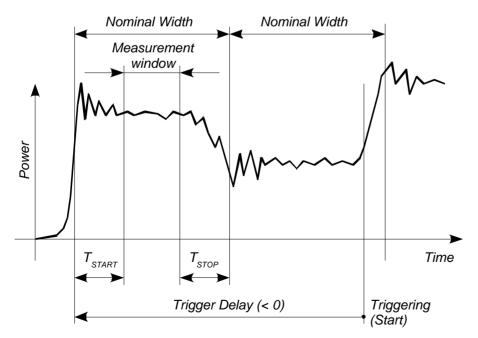



Fig. 6-2 Effect of SENSe:TIMing:EXCLude:STARt and :END in the Burst Average mode

SYSTem

With the aid of the SYSTem system, administrative device settings can be defined and queried. This includes detailed information on the sensor and its initialization and the transfer of available commands and their parameter limits.

Command	Parameter	Unit	Remarks
SYSTem			
:INFO? [Item]			Query only
INITialize			No query
:MINPower?		W	Query only
:TRANsaction			
:BEGIN:			No query
:END			No query

Table 6-5Commands of the SYSTem system

SYSTem:INFO? [Item]

SYSTem:INFO? yields a string containing information that is more detailed than the identification string delivered by the sensor as a response to **IDN?*. If no *Item* is specified, the response string is a sequence of entries in the form *Item:Information-String* separated by *CR* and *LF* (in C notation: *Irln*). With the *Item* optionally appended to the command, the entry for the required *Item* can be queried. The response string is zero-terminated, i.e. its end identification is a zero byte (in C notation: *I*0).

Table 6-6Meaning of Item in the SYSTem:INFO? command

Item	Information string	Remarks
"MANUFACTURER"	"Rohde & Schwarz GmbH & Co. KG"	Manufacturer
"TYPE"	"NRP-Z22" or "NRP-Z23" or "NRP-Z24"	Type designation
"STOCK NUMBER"	"1137.7506.02" or "1137.8002.02" or "1137.8502.02"	Material number
"SERIAL"	" <serial number="">"</serial>	6-digit serial number
"HWVERSION"	"00000000"	Hardware version (standard)
"HWVARIANT"	"00000000"	Hardware model (standard)
"SW BUILD"	" <build number="">"</build>	Version number of sensor firmware
"TECHNOLOGY"	"3 Path Diode"	Detector technology used

Item	Information string	Remarks
"FUNCTION"	"Power Terminating"	The R&S NRP-Z22/-Z23/-Z24 is a terminating power sensor.
"MINPOWER"	" <nominal in="" limit="" lower="" test="" w="">"</nominal>	If the supplied attenuator or another twoport is used and the s-parameter correction is activated, the information string depends on the nominal lower test limit of the sensor/twoport combination. Without a connected attenuator and with deactivated s-parameter correction, the nominal lower test limit is 200 pW, i.e. the sensor responds to SYSTem:INFo? "MINPOWER" with the information string "2e-10".
"MAXPOWER"	" <nominal in="" limit="" test="" upper="" w="">"</nominal>	If the supplied attenuator or another twoport is used and the s-parameter correction is activated, the information string depends on the nominal upper test limit of the sensor/twoport combination. Without a connected attenuator and with deactivated s-parameter correction, the nominal upper test limit is 200 mW, i.e. the sensor responds to SYSTem:INFo? "MAXPOWER" with the information string "0.2".
"MINFREQ"	"1e+07"	The minimum measuring frequency of the R&S NRP-Z22/-Z23/ -Z24 is 10 MHz.
"MAXFREQ"	"1.8e+10"	The maximum measuring frequency of the R&S NRP-Z22/-Z23/ -Z24 is 18 GHz.
"RESOLUTION"	"2.5μs Ext, 10μs Int"	The maximum time resolution that can be reached in the Scope mode is 2.5 μs for internal triggering and 10 μs for external triggering.
"IMPEDANCE"	"50"	The R&S NRP-Z22/-Z23/-Z24 RF input has a nominal input impedance of 50 .
"COUPLING"	"AC/DC"	The RF input of the R&S NRP-Z22/-Z23/-Z24 is DC-coupled, but DC voltages superimposed on the RF signal are suppressed by the measurement amplifier.
"CAL. ABS."	" <date>"</date>	Date of absolute calibration in the format YYYY-MM-DD. "Invalid Calibration Date" is returned with an invalid date entry.
"CAL. REFL."	" <date>"</date>	Date of reflection-coefficient calibration in the format YYYY-MM- DD. "Invalid Calibration Date" is returned with an invalid date entry.
"CAL. S PARA."	" <date>"</date>	Date of s-parameter calibration in the format YYYY-MM-DD. If no S parameter set is loaded, the sensor returns the string "not applicable". "Invalid Calibration Date" is returned with an invalid date entry.
"CAL. MISC."	" <date>"</date>	Date of the calibration of other parameters in the format YYYY- MM-DD. "Invalid Calibration Date" is returned with an invalid date entry.
"SPD MNEMONIC"	" <mnemonic string="">"</mnemonic>	Clear-text designation of the components connected ahead of the sensor.

SYSTem:INITialize

SYSTem:INITialize sets the sensor to the standard state, i.e. the default settings for all test parameters are loaded in the same way as with *RST. The sensor then outputs a complete list of all supported commands and parameters. With the command, the remote-control software can automatically adapt to the features of different types of sensors with different functionality.

SYSTem:MINPower?

SYSTem:MINPower? yields the lower test limit of the sensor or the combination comprising the sensor and components connected ahead of it, if the SENSe:CORRection:SPDevice parameter has the ON value. This query can be used to determine a useful resolution for the result display near the lower test limit.

SYSTem:TRANsaction:BEGin

SYSTEM:TRANsaction:BEGin marks the beginning of a sequence of setting commands between which the parameter limits must not be checked. This prevents the display of error messages when a setting command causes a conflict that is resolved by a subsequent setting command. See SYSTEM:TRANsaction:END.

SYSTem:TRANsaction:END

SYSTEM:TRANsaction:END marks the end of a sequence of setting commands between which the parameter limits must not be checked. After this command, the parameter limits are checked.

TEST

Table 6-7Commands of the TEST system

Command	Parameter	Unit	Remarks
TEST:SENSor?			Query only

TEST:SENSor?

TEST:SENSor? triggers a selftest of the sensor. In contrast to *TST, this command yields detailed information, which is useful for troubleshooting.

TRIGger

Command	Parameter	Unit	Remarks
ABORt			No query
INITiate			
:CONTinuous[?]	OFF ON		
IMMediate			No query
TRIGger			
:ATRigger:STATe[?]	OFF ON		
:COUNt[?]	1 to 2×10 ⁹		
:DELay[?]	x to 100.0	s	
:AUTO[?]	OFF ON		
:HOLDoff[?]	0.0 to 10.0	s	
:HYSTeresis[?]	0.0 to 3.0	dB	
:IMMediate			No query
:LEVel[?]	x to y	W	
:SLOPe[?]	POSitive NEGative		
:SOURce[?]	BUS EXTernal HOLD IMMediate INTernal		

Table 6-8Commands of the TRIGger system

ABORt

ABORt interrupts the current measurement and sets the sensor to the *IDLE* state (normal case). However, if the sensor is in the continuous measurement mode (setting *INITiate:CONTinuous ON*), the *IDLE* state is immediately exited and the sensor enters the *WAIT_FOR_TRIGGER* state.

INITiate:CONTinuous[?] OFF | ON

INITiate:CONTinuous ON activates the continuous measurement mode. In this mode, a new measurement is automatically started when a measurement is terminated. The sensor first enters the *WAIT_FOR_TRIGGER* state and begins with the measurement as soon as the trigger condition is fulfilled. Once the measurement is completed, the sensor again enters the *WAIT_FOR_TRIGGER* state. The sensor will measure continuously assuming continuous trigger events.

In contrast, each measurement cycle must be explicitly started with the *INITiate:IMMediate* command after the *INITiate:CONTinuous OFF* command has been sent. After triggering and completion of the measurement, the sensor enters the *IDLE* status and remains in this status until a new measurement is started with the *INITiate:IMMediate* command.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: OFF

INITiate:IMMediate

INITiate:IMMediate starts a single measurement cycle. The sensor first changes from the *IDLE* state to the *WAIT_FOR_TRIGGER* state and begins with the measurement as soon as the trigger condition is fulfilled. Once the measurement is completed, the sensor again enters the *IDLE* state. Since the command is ignored during measurement, it normally has no effect in the continuous mode (setting *INITiate:CONTinuous ON*).

TRIGger:ATRigger:STATe[?] OFF | ON

TRIGger:ATRigger:STATe ON causes an artificial trigger event to be triggered if no trigger is recorded more than 10 s after the measurement has been started (only in the *Scope* mode). *TRIGger:ATRigger:STATe OFF* deactivates the trigger automatic function.

The query yields

- 1 for OFF.
- 2 for ON.

Default setting: OFF

TRIGger:COUNt[?] 1 to 2 × 10⁹

This setting is designed for applications in which several consecutive measurements have to be performed by sending the *INITiate:IMMediate* command only once, e.g. to obtain a higher measurement speed. The gap between a single measurement and the continuous measurement mode is thus closed. The number of measurements is defined with the parameter associated with the *TRIGger:COUNt* command. This number equals the number of results yielded by the sensor at the end of the measurement.

The TRIGger:COUNt command does not define the number of trigger events required for performing the entire measurement task. The number may vary depending on the measurement mode.

A further increase in the measurement speed can be obtained by combining the mode used with the buffered mode. The results are not made available immediately but as a block at the end of the measurement sequence (see group commands SENSe:POWer:AVG:BUFFer).

The query yields the number of measurements performed with the *INIT:IMMediate* command after a measurement start.

Default setting: 1

TRIGger:DELay[?] x to 100.0

TRIGger:DELay defines the delay (in seconds) between the occurrence of the trigger event and the beginning of the measurement itself for the *Timeslot* and *Scope* modes. This parameter is ignored in the *Burst Average* mode. Pretriggering is obtained by means of negative values; with bus-triggered measurements (see *TRIGger:SOURce*), the parameter must be set to positive values or zero to avoid measurement errors.

The query yields the set trigger delay for the *Timeslot* and *Scope* modes (in seconds).

Lower limit x of the parameter

Modes Continuous Average, Burst Average and Timeslot: x = -0.005Mode Scope: $x = -(\langle SENSe:TRACe:OFFSet:TIME \rangle + 0.005)$

Default setting: 0.0 [s]

TRIGger:DELay:AUTO[?] OFF | ON

TRIGger:DELay:AUTO ON ensures by means of an automatically determined delay that a measurement is only started after the sensor has settled. This is important when thermal sensors are used. The automatically determined delay is ignored if a longer period was set with *TRIGger:DELay*. This does not overwrite the value of *TRIGger:DELay*. *TRIGger:DELay:AUTO OFF* deactivates this function.

The query yields

- 1 for OFF,
- 2 for ON.

Default setting: ON

TRIGger:HOLDoff[?] 0.0 to 10.0

TRIGger:HOLDoff suppresses trigger events within the set holdoff time (in s), starting from the time of the last successful triggering.

The query yields the set holdoff time (in s).

Default setting: 0.0 [s]

TRIGger:HYSTeresis[?] 0.0 to 10.0

TRIGger:HYSTeresis sets the hysteresis of the internal trigger threshold (parameter *TRIGger:LEVel*). Hysteresis is the magnitude (in dB) by which the trigger signal level falls below the trigger threshold (with positive trigger edge) to enable triggering again. The case is exactly the opposite with a negative trigger edge. The trigger hysteresis setting is only relevant to the *INTernal* trigger source.

The query yields the trigger hysteresis in dB.

Default setting: 0.0 [dB]

TRIGger:IMMediate

TRIGger:IMMediate triggers a generic trigger event that causes the sensor to exit immediately the *WAIT_FOR_TRIGGER* state irrespective of the trigger source and the trigger delay and begin with the measurement. The command is the only means of starting a measurement when the trigger source is set to *HOLD*.

TRIGger:LEVel[?] x to y

TRIGger:LEVel sets the trigger threshold for internal triggering derived from the test signal (in W). This setting is irrelevant to all other trigger sources.

The query yields the tri Lower limit x and upp SENSe:CORRection:O	er limit y of parameter	x = 500 × <lower limit="" test=""> y = <upper limit="" test=""></upper></lower>
SENSe:CORRection:C	FFSet:STATe ON:	x = 500 × < lower test limit > × 10^(<sense:correction:offset> / 10) y = < upper test limit > × 10^(<sense:correction:offset> / 10)</sense:correction:offset></sense:correction:offset>
< lower test limit >:	or entered lower test lin (with SENSe:CORRect	if the supplied attenuator is used nit of the sensor/twoport combination tion:SPDevice:STATe ON) or 200.0e-12 tion:SPDevice:STATe OFF)
< upper test limit >:	or entered upper test line (with SENSe:CORRect	t if the supplied attenuator is used mit of the sensor/twoport combination tion:SPDevice:STATe ON) or 0.2 tion:SPDevice:STATe OFF)

Default setting: $10 \times x$

TRIGger:SLOPe[?] POSitive | NEGative

TRIGger:SLOPe defines the edge of the trigger event with internal and external triggering in the *Timeslot* and *Scope* modes. In this connection, positive means increasing envelope power (with internal triggering) or increasing voltage (with external triggering). As in the *Burst Average* mode, this command has no effect in conjunction with trigger sources *BUS*, *HOLD* and *IMMediate*.

The query yields

- 1 for POSitive,
- 2 for NEGative.

Default setting: POSitive

TRIGger:SOURce[?] BUS | EXTernal | HOLD | IMMediate | INTernal

TRIGger:SOURce sets the trigger source.

- *BUS*: Triggering with command **TRG* or *TRIGger:IMMediate*.
- *EXTernal*: Triggering via USB Adapter R&S NRP-Z3. Relevant trigger parameters: *TRIGger:DELay* and *TRIGger:SLOPe*.
- HOLD: Triggering only with command TRIGger:IMMediate.
- *IMMediate*: Automatic triggering without explicit event.
- *INTernal*: Triggering by the measurement signal. Relevant trigger parameters: *TRIGger:LEVel, TRIGger:DELay* and *TRIGger:SLOPe* (not in the *Burst Average* mode).

The query yields

- 1 for BUS,
- 2 for EXTernal,
- 4 for HOLD,
- 8 for IMMediate,
- 16 for INTernal.

Default setting: *IMMediate*

List of Remote-Control Commands

The remote-control commands of the R&S NRP-Z22/-Z23/-Z24 have a syntax based on standard SCPI 1999.0, but they comply with it only to a limited extent.

Table 6-9	List of remote-control	commands
		oonnanao

Command	Parameter	Unit	Default setting	Page
* Commands		•		
*IDN?				6.2
*RST				6.2
*TRG				6.2
*TST?				6.2
CALibration Commands		-		-
CALibration:DATA[?]	<calibration as="" block="" data="" definite="" length="" set=""></calibration>			6.3
CALibration:DATA:LENGth?		Bytes		6.3
CALibration:ZERO:AUTO[?]	OFF ON ONCE		OFF (fixed)	6.4
SENSe Commands				
SENSe:AVERage:COUNt[?]	1 to 65536		4	6.7
SENSe:AVERage:COUNt:AUTO[?]	OFF ON ONCE		ON	6.7
SENSe:AVERage:COUNt:AUTO:MTIMe[?]	1.0 to 999.99	s	30.0	6.8
SENSe:AVERage:COUNt:AUTO:NSRatio[?]	0.0001 to 1.0	dB	0.01	6.8
SENSe:AVERage:COUNt:AUTO:RESolution[?]	1 to 4		3	6.8
SENSe:AVERage:COUNt:AUTO:SLOT[?]	1 to <sense:power:tslot:avg :COUNt></sense:power:tslot:avg 		1	6.8
SENSe:AVERage:COUNt:AUTO:TYPE[?]	RESolution NSRatio		RESolution	6.9
SENSe:AVERage:RESet				6.9
SENSe:AVERage:STATe[?]	OFF ON		ON	6.9
SENSe:AVERage:TCONtrol[?]	MOVing REPeat		REPeat	6.9
SENSe:CORRection:DCYCle[?]	0.001 to 99.999	%	1.0	6.10
SENSe:CORRection:DCYCle:STATe[?]	OFF ON		OFF	6.10
SENSe:CORRection:OFFSet[?]	-200.0 to 200.0	dB	0.0	6.10

Command	Parameter	Unit	Default setting	Page
SENSe:CORRection:OFFSet:STATe[?]	OFF ON		OFF	6.10
SENSe:CORRection:SPDev:STATe[?]	OFF ON		ON (can be modified by the user)	6.11
SENSe:FREQuency[?]	10.0e6 to 18.0e9	Hz	50.0e6	6.11
SENSe:FUNCtion[?]	"POWer:AVG" "POWer:TSLot:AVG" "POWer:BURSt:AVG" "XTIMe:POWer"		"POWer:AVG"	6.12
SENSe:POWer:AVG:APERture[?]	0.0001 to 0.3	s	0.02	6.13
SENSe:POWer:AVG:BUFFer:SIZE[?]	1 to 1024		1	6.13
SENSe:POWer:AVG:BUFFer:STATe[?]	OFF ON		OFF	6.14
SENSe:POWer:AVG:SMOothing:STATe[?]	OFF ON		ON	6.14
SENSe:POWer:BURSt:DTOLerance[?]	0.0 to 0.003	s	0.0001	6.14
SENSe:POWer:TSLot:AVG:COUNt[?]	1 to 128		8	6.15
SENSe:POWer:TSLot:AVG:WIDTh[?]	0.0001 to 0.1	s	0.001	6.15
SENSe:RANGe[?]	0 to 2		2	6.15
SENSe:RANGe:AUTO[?]	OFF ON		ON	6.16
SENSe:RANGe:AUTO:CLEVel[?]	-20.0 to 0.0	dB	0.0	6.16
SENSe:SAMPLING[?]	FREQ1 FREQ2		FREQ1	6.16
SENSe:SGAMma:CORRection:STATe[?]	OFF ON		OFF	6.16
SENSe:SGAMma:MAGNitude[?]	0.0 to 1.0		0.0	6.17
SENSe:SGAMma:PHASe[?]	-360.0 to 360.0	degree	0.0	6.17
SENSe:TRACe:AVERage:COUNt[?]	1 to 65536		4	6.17
SENSe:TRACe:AVERage:COUNt:AUTO[?]	OFF ON ONCE		ON	6.17
SENSe:TRACe:AVERage:COUNt:AUTO :MTIMe[?]	1.0 to 999.99	S	30.0	6.18
SENSe:TRACe:AVERage:COUNt:AUTO :NSRatio[?]	0.0001 to 1.0	dB	0.01	6.18
SENSe:TRACe:AVERage:COUNt:AUTO :POINt[?]	1 to <sense:trace:points></sense:trace:points>		1	6.18
SENSe:TRACe:AVERage:COUNt:AUTO :RESolution[?]	1 to 4		3	6.18
SENSe:TRACe:AVERage:COUNt:AUTO :TYPE[?]	RESolution NSRatio		RESolution	6.19

Command	Parameter	Unit	Default setting	Page
SENSe:TRACe:AVERage:STATe[?]	OFF ON		ON	6.19
SENSe:TRACe:AVERage:TCONtrol[?]	MOVing REPeat		REPeat	6.19
SENSe:TRACe:MPWidth?		s		6.19
SENSe:TRACe:OFFSet:TIME[?]	- (<trigger:delay> + 0.005) to 100.0</trigger:delay>	s	0.0	6.19
SENSe:TRACe:POINts[?]	1 to 1024		100	6.20
SENSe:TRACe:REALtime[?]	OFF ON		OFF	6.20
SENSe:TRACe:TIME[?]	0.0001 to 0.3	s	0.01	6.20
SENSe:TIMing:EXCLude:STARt[?]	0.0 to 0.003	s	0.0	6.20
SENSe:TIMing:EXCLude:STOP[?]	0.0 to 0.003	s	0.0	6.20
SYSTem Commands				
SYSTem:INFO? [Item]				6.22
SYSTem:INITialize				6.24
SYSTem:MINPower?		W		6.24
SYSTem:TRANsaction:BEGin				6.24
SYSTem:TRANsaction:END				6.24
Test Commands		-	-	-
TEST:SENSor?				6.25
Triggersystem Commands			•	
ABORt				6.26
INITiate:CONTinuous[?]	OFF ON		OFF	6.26
INITiate:IMMediate				6.27
TRIGger:ATRigger:STATe[?]	OFF ON		OFF	6.27
TRIGger:COUNt[?]	1 to 2×10 ⁹		1	6.27
TRIGger:DELay[?]	x to 100.0	s	0.0	6.28
TRIGger:DELay:AUTO[?]	OFF ON		OFF	6.28
TRIGger:HOLDoff[?]	0.0 to 10.0	s	0.0	6.28
TRIGger:HYSTeresis[?]	0.0 to 10.0	dB	0.0	6.28

Command	Parameter	Unit	Default setting	Page
TRIGger:IMMediate				6.29
TRIGger:LEVel[?]	x to y	W	10 × x	6.29
TRIGger:SLOPe[?]	POSitive NEGative		POSitive	6.29
TRIGger:SOURce[?]	BUS EXTernal HOLD IMMediate INTernal		IMMediate	6.30
SERVice Commands				
SERVice:CALibration:DITHer	ONCE		OFF	
SERVice:CALibration:DITHer:DATA?			0	
SERVice:CALibration:TEMPerature	ONCE		OFF	
SERVice:CALibration:TEMPerature:DATA?		к	0.0	
SERVice:CALibration:TEST[?]			-1	
SERVice:CALibration:ZERO:NEG0?			1	
SERVice:CALibration:ZERO:POS0?			2	
SERVice:CALibration:ZERO:NEG1?			3	
SERVice:CALibration:ZERO:POS1?			4	
SERVice:CALibration:ZERO:NEG2?			5	
SERVice:CALibration:ZERO:POS2?			6	
SERVice:DITHer	OFF ON		ON	
SERVice:MVCorrection[?]	0 to 63		63	
SERVice:PARameter:RTEMp[?]	<float value=""></float>	к	0.0	
SERVice:PARameter:RNULL0[?]	<float value=""></float>	Ω	0.0	
SERVice:PARameter:RNULL1[?]	<float value=""></float>	Ω	0.0	
SERVice:PARameter:RNULL2[?]	<float value=""></float>	Ω	0.0	
SERVice:PARameter:RBAHN[?]	<float value=""></float>	Ω	0.0	
SERVice:PARameter:NREF[?]	<float value=""></float>		0.0	
SERVice:PARameter:ATHERM[?]	<float value=""></float>	K ⁻¹	0.0	
SERVice:PARameter:BTHERM[?]	<float value=""></float>	к	0.0	
SERVice:PARameter:CTHERM[?]	<float value=""></float>	K ⁻¹	0.0	
SERVice:PARameter:DTHERM[?]	<float value=""></float>	K ⁻¹	0.0	

Command	Parameter	Unit	Default setting	Page
SERVice:PARameter:CJUNC[?]	<float value=""></float>	F	0.0	
SERVice:RCount[?]	1 to 32767		0	
SERVice:RESult[?]	0.0 to 1.0e6	W	0.0	
SERVice:SAMPle[?]	0 to 99999999		1000	
SERVice:TDEScriptor?				
SERVice:TDEScriptor:LENGth?		Bytes		
SERVice:UNLock	1234			

Test and Measurement Division

Service Instructions

Table of Contents

1	Performance Test	1.1
	Preliminary Remarks	1.1
	Test Instructions	1.1
	Measuring Equipment and Accessories	1.1
	Performance Test with Calibration Kit R&S NRVC and Calibration Software Recal	1.2
	Performance Test with Other Measuring Equipment	1.2
	Checking Zeroing	1.2
	Checking Absolute Measurement Accuracy	1.2
	Checking Linearity	1.5
	Checking Matching	1.6
	Quick Test	1.7
	Test Instructions	1.7
	Measuring Equipment and Accessories Required for the Quick Test	1.8
	Checking Zeroing	1.8
	Checking Absolute Measurement Accuracy (RF Sensor + Attenuator)	1.8
	Checking Absolute Measurement Accuracy (RF Sensor)	1.8
	Checking Input Resistance	
	Test Report	1.10

2	Adjustment	2.	1
---	------------	----	---

Preliminary Remarks	2.1
RF Sensor	2.1
Attenuator	2.1
Measuring Equipment and Accessories	2.1
Measuring and Storing the S-Parameters	2.2

3	Repair	3.1
	Design and Circuit Description	3.1
	Block Diagram	3.1
	Description of the Block Diagram	3.2
	Attenuator	3.2
	Microwave Detector	3.2
	Analog Board	3.4
	Digital Board	3.4
	Module Replacement	3.5
	Required Tools	3.5
	List of Modules	3.7
	Opening and Reassembly (Exchange of Plastic Shell Halves)	3.8
	Replacement of Sensor Cable W1	3.10
	Removing the Sensor Cable	3.10
	Installing the Sensor Cable	3.10
	Replacement of Attenuator	3.11
	Removing Protection against Accidental Contact (only R&S NRP-Z23/-Z24)	3.11
	Assembling Protection against Accidental Contact (only R&S NRP-Z23/-Z24)	3.11
	Measuring Attenuator and Store S-Parameters in Sensor	3.11
	Troubleshooting	3.12
	Overview of Errors, Causes and Corrective Steps	

4	Firmware Update	4.1
	Installation of New R&S NRP-Z22/-Z23/-Z24 Firmware	4.1
	Hardware and software requirements	4.1
	Preparation	
	Updating the application firmware	
	Updating the boot loader	4.4

5	Documents	5.1
	Shipping of Instrument and Ordering of Spare Parts	5.1
	Shipping of Instrument	5.1
	Ordering of Spare Parts	5.1
	Ordering of Replacement Sensors	5.2
	Spare Parts	5.3

Figures

Fig. 3-1	Block diagrams of Sensors R&S NRP-Z22, R&S NRP-Z23 and R&S NRP-Z24	.3.1
Fig. 3-2	Membrane cables	.3.6
Fig. 3-3	Opening the sensor	.3.8
Fig. 3-4	Replacement of sensor cable	3.10
Fig. 3-5	Removing the protection against accidental contact for R&S NRP-Z23 and R&S NRP-Z24	3.11

Tables

Table 2-1	Max. Uncertainty of power calibration system at 0 dBm (in dB, including mismatch)2.1
Table 2-2	Additional data for loading the S-parameters	2.2
Table 2-3	Setting of the sweep segments on the R&S ZVM	2.2
Table 3-1	Assignment of the flexstrip connector W3	3.3
Table 3-2	List of modules/spare parts for the R&S NRP-Z22/-Z23/-Z24	3.7
Table 5-1	List of modules/spare parts for the R&S NRP-Z22/-Z23/-Z24	5.3

1 Performance Test

Preliminary Remarks

Verifying the data sheet specifications for the Power Sensors R&S NRP-Z22, R&S NRP-Z23 and R&S NRP-Z24 requires a considerable amount of equipment and care. Rohde & Schwarz therefore recommends using the Calibration Kit R&S NRVC or corresponding equipment that yields the same accuracy. The tests are to be carried out directly at the manufacturer, its representatives or subsidiaries or at calibration sites that are equipped accordingly.

To check the sensor using simple means, a *quick test* (see page 1.7) is recommended.

Test Instructions

- The tests are to be performed at an ambient temperature of 20 °C to 25 °C. The DUT should be connected to the (activated) R&S NRP base unit for at least 30 minutes before the tests are performed.
- The test limits used in the following sections are based on the data sheet for the sensors R&S NRP-Z22, R&S NRP-Z23 and R&S NRP-Z24. However, they are valid only on the conditions defined in the corresponding test step. They are therefore not legally binding as accuracy specifications; only data sheet specifications are legally binding.
- The entries made on the Power Meter R&S NRP are abbreviated as follows:

[<key>]</key>	Press front-panel key, e.g. [FREQ].
[<softkey>]</softkey>	Press softkey, e.g. [RANGE].
[<nn unit="">]</nn>	Enter value and confirm with unit, e.g. [3 kHz].
Successive entri	es are separated by [:], e.g. [FREQ : 3 GHz]. 3 GHz]

Measuring Equipment and Accessories

ltem	Type of unit	Recommended characteristics	Recommende d units	R&S order number	Application
1	Power calibration system	10 MHz to 18 GHz/0 dBm	R&S NRVC R&S NRVC-B1 R&S SMP02 R&S NRVD	1109.0500.02 1109.1007.02 1035.5005.02 0857.8008.02	Absolute measurement accuracy
2	Linearity calibration system	-30 dBm to +23 dBm/50 MHz	R&S NRVC-B2 R&S SMGL	1109.1207.02 1020.2005.52	Linearity
3	Network analyzer	10 MHz to 18 GHz Test port: N connector	R&S ZVM	1127.8500.60	Matching
4	Controller	PC with IEC/IEEE bus card (NI)			In conjunction with R&S NRVC
5	Power meter	To connect the DUT	R&S NRP	1143.8500.02	Absolute measurement accuracy Linearity

Performance Test with Calibration Kit R&S NRVC and Calibration Softw. *Recal*

For detailed information on the performance test, refer to the operating manual for the Calibration Kit R&S NRVC.

SWR measurement has to be carried out using a separate network analyzer. Evaluation is performed by Calibration Software *Recal*.

Performance Test with Other Measuring Equipment

This section describes the required test steps but does not specify a test report with fixed test limits because such limits are highly dependent on the uncertainty of the calibration systems used.

Checking Zeroing

Test setup	- With the sensor (DUT) connected to the R&S NRP, no power is fed to the input of the RF sensor.
Setting on R&S NRP	- [(PRE)SET: (PRE)SET]
	- [ZERO/CAL: ZERO/CAL]
Test	- "Zeroing A(B/C/D) successful" message.
	- Display values within the limits for the quick test (starting on page 1.10).

Checking Absolute Measurement Accuracy

Since the sensor has three measurement paths and since it can be used either with or without attenuator, a total of four test steps are to be carried out (Table 1-1).

The maximum permissible measurement error depends on the calibration uncertainty of the sensor (Table 1-2 and Table 1-3) and on the uncertainty of the calibration system. The recommended procedure is to combine both uncertainties in accordance with the RSS method (square root based on the sum of squares) and to use the expanded combined uncertainty as a test limit.

To calibrate measurement path 1 (item 4), the test result from measurement path 2 can be applied if the calibration system does not supply a calibration power of 10 μ W or if its uncertainty is too large. In this case, merely the display difference between the two measurement paths is checked (Table 1-4).

Item	Configuration	Measurement path	Calibration power	
1	RF sensor with attenuator	2 (R&S NRP-Z22) 1 (R&S NRP-Z23/-Z24)	1 m) M ((0 m) D m)	
2		2	1 mW (0 dBm)	
3	RF sensor without attenua- tor	3		
4		1	10 µW (-20 dBm)	

Frequency Test step (item)	10 MHz to <20 MHz	20 MHz to <100 MHz	100 MHz to 4 GHz	>4 GHz to 8 GHz	>8 GHz to 12.4 GHz	>12.4 GHz to 18 GHz
1	0.072	0.072	0.077	0.095	0.095	0.118
2	0.047	0.047	0.057	0.071	0.076	0.099
3	0.048	0.047	0.057	0.072	0.076	0.099
4	0.056	0.056	0.066	0.083	0.094	0.123

Table 1-2	Expanded calibration uncertainties of the Sensor R&S NRP-Z22 (in dB)

Table 1-3Expanded calibration uncertainties of the Sensors R&S NRP-Z23/-Z24 (in dB)

Frequency Test step (Item)	10 MHz to <20 MHz	20 MHz to <100 MHz	100 MHz to 4 GHz	>4 GHz to 8 GHz	>8 GHz to 12.4 GHz	>12.4 GHz to 18 GHz
1	0.078	0.078	0.084	0.110	0.110	0.139
2	0.047	0.047	0.057	0.071	0.076	0.099
3	0.048	0.047	0.057	0.072	0.076	0.099
4	0.056	0.056	0.066	0.083	0.094	0.123

Calibration frequencies:

10 MHz, 15 MHz, 20 MHz, 30 MHz, 50 MHz, 100 MHz; from 250 MHz to 18 GHz in steps of 250 MHz

Table 1-4	Max. permissible measurement error (in dB) between meas. paths 1 and 2 of the RF
	sensor

Frequency	10 MHz to	20 MHz to	100 MHz to	>4 GHz to	>8 GHz to	>12.4 GHz to
	<20 MHz	<100 MHz	4 GHz	8 GHz	12.4 GHz	18 GHz
Meas. error	0.045	0.044	0.048	0.054	0.063	0.079

Procedure (item 1):

- Sensor (DUT) is connected to the output of the power calibra- tion system and to one of the test inputs of the R&S NRP: at- tenuator is screwed on
- Switch off output power
-[(PRE)SET: (PRE)SET]
-[ZERO/CAL: ZERO/CAL]
-[Sensor: Filter: Auto [ß]: Auto Config: Fixed Noise: 0.005 dB]
-[Window: Resolution: 0.001 dB]
-[Sensor: Range: Auto □: Path 2]
- [Sensor: Range: Auto □: Path 1]
- Set level 0 dBm at first calibration frequency (e.g. 10 MHz). - [FREQ : 10 MHz]

Test

- Test level difference between calibration system and display value of the R&S NRP for compliance with calculated test limits.

Continue the performance test for the remaining frequency points as required. In the case of frequencies exceeding 1 GHz, it is recommended to obtain the average value from at least three measurements with different attenuator positions. This requires that the attenuator be turned by 90° to 120° with respect to the output connector of the calibration system and the input of the RF sensor.

Procedure (items 2 and 3):

Test setup	- RF sensor without attenuator connected to the output of the power calibration system and to one of the measurement inputs of the R&S NRP
Calibration system setting	- Switch off output power
Setting on R&S NRP	 -[(PRE)SET: (PRE)SET: Sensor: Offset: S Parameter Device □] -[ZERO/CAL: ZERO/CAL] -[Sensor: Filter: Auto [ß]: Auto Config: Fixed Noise: 0.005 dB] -[Window: Resolution: 0.001 dB] -[Sensor: Range: Auto □: Path 2]
Calibration system setting	- Set level 0 dBm at first calibration frequency (e.g. 10 MHz)
	1, 3, (3,)
Setting on R&S NRP	- [FREQ: 10 MHz]
Setting on R&S NRP Test	
C C	 [FREQ: 10 MHz] Test level difference between calibration system and display value of the R&S NRP for compliance with test limits calculated

Continue the performance test for the remaining frequency points as required. In the case of frequencies exceeding 1 GHz, it is recommended to obtain the average value from at least three measurements with different attenuator positions. This requires that the attenuator be turned by 90° to 120° with respect to the output connector of the calibration system.

Procedure (item 4):

The measurement sequence is to be selected corresponding to item 2/3. If the power required to calibrate measurement path 1 is not available at the required level of accuracy, measurement path 2 can be used as a reference in an alternative procedure:

Procedure (item 4) with reference to meas. path 2:

Test setup	 RF sensor without attenuator connected to the output of the power calibration system and to one of the measurement inputs of the R&S NRP
Calibration system setting	- Switch off output power
Setting on R&S NRP	-[(PRE)SET: (PRE)SET: Sensor: Offset: S Parameter Device □]
	-[ZERO/CAL: ZERO/CAL]
	-[Sensor: Filter: Auto [ß]: Auto Config: Fixed Noise: 0.005 dB]
	-[Window: Resolution: 0.001 dB]
Setting on R&S NRP	-[Sensor: Range: Auto □: Path 2]
Calibration system setting	-Set level -20 dBm at first calibration frequency (e.g. 10 MHz)
Setting on R&S NRP	- [FREQ: 10 MHz: Measurement: Relative On: Relative Reset]
Measurement	- The R&S NRP must display approx. 0.000 dB
Setting on R&S NRP	- [Sensor: Range: Auto □: Path 1]
Test	 Check display value of the R&S NRP for compliance with limits specified in Table 1-4

Continue the performance test for the remaining frequency points as required. It is not necessary to turn the connector.

Checking Linearity

The linearity check is performed at 50 MHz with autoranging activated. The reference power is 1 mW (0 dBm). The maximum permissible linearity error depends on the linearity uncertainty of the RF sensor (Table 1-5) and the linearity uncertainty of the calibration system. It is recommended to combine both uncertainties according to the RSS method (square root based on the sum of squares) and to use the expanded combined uncertainty as the test limit.

Table 1-5Expanded linearity uncertainty of the RF sensor for Sensors R&S NRP-Z22,
R&S NRP-Z23 and R&S NRP-Z24 at 50 MHz (in dB, with reference to 0 dBm)

Meas. level	-30 dBm to -13 dBm	-13 dBm to +1 dBm	+1 dBm to +23 dBm
Uncertainty	0.044	0.022	0.044

Calibration levels: -30 dBm, -25 dBm, -20 dBm, -15 dBm, -10 dBm, -5 dBm, 0 dBm, +5 dBm, +10 dBm, +15 dBm, +20 dBm, +23 dBm

Procedure:

Test setup	- RF sensor without attenuator connected to the output of the calibration system and to one of the measurement inputs of the R&S NRP
Calibration system setting	- Switch off output power
Setting on R&S NRP	-[(PRE)SET: (PRE)SET: Sensor: Offset: S Parameter Device]

	-[ZERO/CAL: ZERO/CAL]
	-[Sensor: Filter: Auto [ß]: Auto Config: Fixed Noise: 0.005 dB]
	-[Window: Resolution: 0.001 dB]
	-[FREQ : 50 MHz] (preferred value; otherwise, same as for fre- quency of calibration system)
Calibration system setting	- Level 0 dBm, frequency 50 MHz
Setting on R&S NRP	-[Measurement: Relative On: Relative Reset]
Measurement	- The R&S NRP must display approx. 0.000 dB
Calibration system setting	- Level x dBm
Test	 Check level difference between the R&S NRP and calibration system for compliance with the calculated limits

Continue testing for the remaining levels accordingly.

Checking Matching

The matching measurements include the inputs of the attenuator and RF sensor. In these measurements, the RF sensor can be operated with or without the R&S NRP base unit. The attenuator for the R&S NRP-Z22 and R&S NRP-Z23 must always be measured with the sensor connected.

The measurement uncertainty of the network analyzer that is used should not exceed a value of ± 0.03 (for the SWR).

Table 1-6 M	ax. SWR of the RF sensor section for the Sensors R&S NRP-Z22/-Z23/-Z24
-------------	--

Frequency		10 MHz to 2.4 GHz	> 2.4 GHz to 8 GHz	> 8 GHz to 12.4 GHz	> 12.4 GHz to 18 GHz
Max. SWR	R&S NRP-Z22	1.11	1.18	1.23	1.23
	R&S NRP-Z23/-Z24	1.11	1.18	1.23	1.30

Table 1-7	Max. SWR of the Sensors R&S NRP-Z22/-Z23/-Z24
	(at input of the attenuator)

Frequency		10 MHz to 2,4 GHz	> 2,4 GHz to 8 GHz	> 8 GHz to 12,4 GHz	> 12,4 GHz to 18 GHz
Max. SWR	R&S NRP-Z22	1.14	1.20	1.25	1.30
	R&S NRP-Z23/-Z24	1.14	1.25	1.30	1.41

Quick Test

The following tests are used to check the R&S NRP-Z22, R&S NRP-Z23 and R&S NRP-Z24 with simple means. If the tests are passed, compliance of the sensors with the specifications throughout the complete frequency and power range is largely ensured.

The test consists of:

- Zeroing
- Absolute measurement accuracy of the entire sensor (RF sensor + attenuator)
- Absolute measurement accuracy of the RF sensor
- Input resistance (for DC voltage/current)

Test Instructions

- The tests are to be performed at an ambient temperature of 15°C to 35°C. The DUT should be connected to the (activated) R&S NRP base unit for at least 30 minutes before the tests are performed.
- The test limits used in the following sections are based on the data sheet but are valid only on the conditions defined for the corresponding test step. They are therefore not legally binding as accuracy specifications; only data sheet specifications are legally binding.
- The entries made on the Power Meter R&S NRP are abbreviated as follows:

[<KEY>]Press front-panel key, e.g. [FREQ].[<SOFTKEY>]Press softkey, e.g. [RANGE].[<nn unit>]Enter value and confirm with unit, e.g. [3 GHz].Successive entries are separated by [:], e.g. [FREQ : 3 GHz].

Measuring Equipment and Accessories Required for the Quick Test

Item	Type of unit	Recommended characteristics	Recommended units	R&S order number	Application
1	Power meter	For connecting the DUT, with power reference 1 mW/50 MHz	R&S NRP R&S NRP-B1	1143.8500.02 1146.9008.02	Absolute measurement accuracy
2	System- voltmeter	4-wire resistance measurement at 50 Ω , expanded measurement uncertainty <0.2 Ω			Input resistance
3	Adapter	BNC (plug) to 4 mm sockets (2-pin)		0017.6742.00	Input resistance
4	Adapter	BNC (socket) to N (socket)			Input resistance

*) With firmware rev. 3.0 or higher

Checking Zeroing

Test setup	 Sensor (DUT) connected to the R&S NRP (channel A or B); no power supplied to the input of the RF sensor
Setting on R&S NRP	- [(PRE)SET: (PRE)SET]
	- [ZERO/CAL: ZERO/CAL]
Test	- "Zeroing A(B/C/D) successful" message
	- Display values within the limits of the test report

Checking Absolute Measurement Accuracy (RF Sensor + Attenuator)

Test setup	 Sensor (DUT) and attenuator connected to the R&S NRP; the attenuator input is connected with the output of the power ref- erence
Setting on R&S NRP	- [ZERO/CAL : Test at Power Ref (with pad)]
Test	- The test must be completed without error messages
Setting on R&S NRP	- [ZERO/CAL: Report]
Test	 The displayed meas. error must not exceed the test report lim- its

Checking Absolute Measurement Accuracy (RF Sensor)

Test setup	 Sensor (DUT) without attenuator connected to the R&S NRP; the RF sensor input is connected with the output of the power reference
Setting on R&S NRP	- [ZERO/CAL : Test at Power Ref (Sensor only)]
Test	- The test must be completed without error messages
Setting on R&S NRP	- [ZERO/CAL: Report]
Test	- The displayed meas. error must not exceed the test report lim- its

Checking Input Resistance

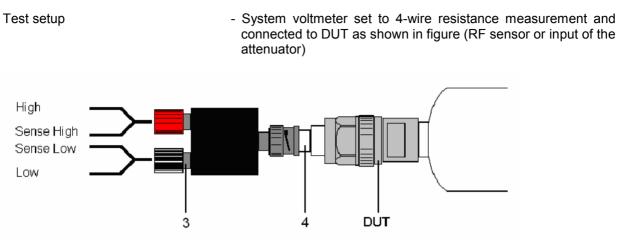


Fig. 1-1 Connection of DUT for measuring the input resistance

Test - Check input resistance of the RF sensor section and attenuator for compliance with limits of test report

Test Report

Pov Sto	Quick test Power Sensor R&S NRP-Z22 Stock number: 1137.7506.02 Name: Date:						
Item no.	tem Characteristic Min. value Actual value Max. value Unit					Unit	
1	Zeroing				-56.0	dBm	
2	Absolute measure- ment accuracy with at- tenuator		-0.12		+0.12	dB	
3	Absolute measure- ment accuracy without	Path 1	-0.10		+0.10	dB	
4	attenuator	Path 2	-0.10		+0.10	dB	
5		Path 3	-0.10		+0.10	dB	
6	Input resistance	RF sensor	50.2		51.8	Ω	
7		Attenuator	48.0		52.0	Ω	

Po	liCk test wer Sensor R&S NRP-Z	-				
Sto	Stock number: 1137.8002.02 Name:					
Ser	Serial number: Date:					
Item no.	Characteristic		Min. value	Actual value	Max. value	Unit
1	Zeroing				-46.0	dBm
2	Absolute measure- ment accuracy with at- tenuator		-0.12		+0.12	dB
3	Absolute measure- ment accuracy without	Path 1	-0.10		+0.10	dB
4	attenuator	Path 2	-0.10		+0.10	dB
5		Path 3	-0.10		+0.10	dB
6	Input resistance	RF sensor	50.2		51.8	Ω
7		Attenuator	48.0		52.0	Ω

	liCk test wer Sensor R&S NRP-Z	24					
Sto	Stock number: 1137.8502.02 Name:						
Ser	Serial number: Date:						
ltem no.	Characteristic		Min. value	Actual value	Max. value	Unit	
1	Zeroing				-41.0	dBm	
2	Absolute measure- ment accuracy with at- tenuator		-0.12		+0.12	dB	
3	Absolute measure- ment accuracy without	Path 1	-0.10		+0.10	dB	
4	attenuator	Path 2	-0.10		+0.10	dB	
5		Path 3	-0.10		+0.10	dB	
6	Input resistance	RF sensor	50.2		51.8	Ω	
7	P	Attenuator	48.0		52.0	Ω	

2 Adjustment

Preliminary Remarks

The data memories of the Sensors R&S NRP-Z22, R&S NRP-Z23 and R&S NRP-Z24 contain separate calibration data for the RF sensor and the lead-in attenuator. Therefore, the two components can be adjusted separately.

RF Sensor

The *Recal* calibration software is required in order to adjust the RF sensor. It is supplied as part of the Calibration Kit R&S NRVC. It is used to calculate and store correction data on the basis of the measurement results for the absolute calibration of the three measurement paths. This measurement data is obtained during a performance test (see Chapter 1). The Calibration Kit R&S NRVC is recommended for this purpose although it is not mandatory. A vector network analyzer is required in order to perform matching measurements.

To ensure that the measurement accuracy of the RF sensor complies with the data sheet specifications after the adjustment, the calibration system must not have any uncertainties that are higher than those specified in the table below.

Table 2-1Max. uncertainty of power calibration system at 0 dBm (in dB, including mismatch)

Frequency	10 MHz to	100 MHz to	>4 GHz to	>8 GHz to	>12.4 GHz to
	<100 MHz	4 GHz	8 GHz	12.4 GHz	18 GHz
	0.04	0.05	0.065	0.07	0.09

For further details, refer to the operating manual for the Calibration Kit R&S NRVC or the online help for the *Recal* program.

Attenuator

Measuring Equipment and Accessories

Item	Type of unit	Recommended characteristic	Rec. units	R&S order number	Application
1	Vector network analyzer	$\begin{array}{llllllllllllllllllllllllllllllllllll$	R&S ZVM	1127.8500.60	Meas. of the S- parameters
2	USB adapter	To connect the DUT to a PC	R&S NRP-Z3 R&S NRP-Z4	1146.7005.02 1146.8001.02	Storage of the S-par. data set in the sensor

Measuring and Storing the S-Parameters

The attenuator is treated as an S-parameter device that can be supported with all sensors of the R&S NRP-Z series. All four S-parameters are determined at a number of frequencies and stored in the sensor. For details regarding the storage and format of S-parameters, refer to the section **Program Module "Update of the S-parameters"** in Chapter 3 of the operating manual. Table 2-2 contains a few parameters that are to be entered in a dialog window of the specified program module.

Table 2-3 contains all essential settings for a network analyzer of type R&S ZVM. If other network analyzers are used, the specified frequency reference points must always be implemented.

Nominal power limits of Sensor type Nominal power limits of sensor/2-port combination		S-parameter device mnemonic	S-parameter correction active by default	
	Lower [W]	<u>U</u> pper [W]		
R&S NRP-Z22	2e-9	2	Pad for Z22	\checkmark
R&S NRP-Z23	20e-9	15	Pad for Z23	\checkmark
R&S NRP-Z24	60e-9	30	Pad for Z24	\checkmark

Table 2-2 Additional data for loading the S-parameters

Table 2-3 Setting of the sweep segments on the R&S ZVM

Segment	Start frequency	Stop frequency	Points	Generator level	IF bandwidth	Averaging
1	10 MHz	100 MHz	10			256
2	110 MHz	200 MHz	10	–10 dBm	1 kHz	16
3	210 MHz	16 GHz	1580			1
4	16.01 GHz	18 GHz	200			16

3 Repair

This chapter describes the design and simple measures for repairing and determining faults as well as the replacement of modules.

The firmware update is explained in chapter 4 of this service manual.

Design and Circuit Description

Block Diagram

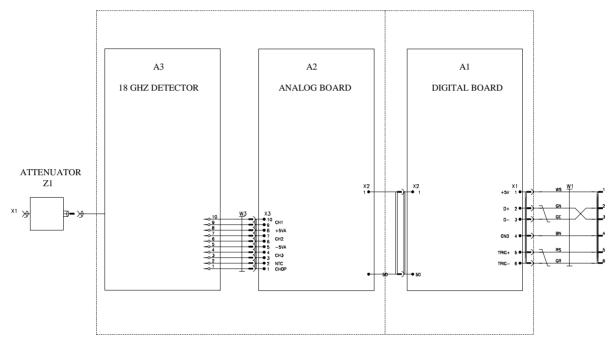


Fig. 3-1 Block diagrams of Sensors R&S NRP-Z22, R&S NRP-Z23 and R&S NRP-Z24

Description of the Block Diagram

The Sensors R&S NRP-Z22, R&S NRP-Z23 and R&S NRP-Z24 can measure the average power of nearly any modulated RF signals over a large dynamic range. They include all modules required for analog and digital signal processing and deliver completely corrected measured values. Communication with the R&S NRP base unit is handled via a USB interface.

The sensors consist of an RF sensor that is largely of the same design as the Sensor R&S NRP-Z21 and an attenuator for level reduction. Because of the high level of self-warming when measuring higher powers, the attenuator for the Sensors R&S NRP-Z23 and R&S NRP-Z24 is thermally insulated from the RF sensor.

Three detectors are used in the RF sensor to cover the large dynamic range of 90 dB; the input signal is fed unattenuated to path 1, attenuated by 20 dB to path 2 and attenuated by 40 dB to path 3. Sensitivity is highest on path 1, medium on path 2 and lowest on path 3.

Depending on the RF input signal level, one or two measurement paths are driven to such an extent that these paths can be evaluated. A channel is always either driven at a very low level or overdriven. The output voltages of the three detectors are amplified and digitized independently of each other to obtain a continuous transition between the measurement paths. The digital values provided by the A/D converters undergo various corrections (zero offset, temperature, linearity). A weighting algorithm then decides which path or - in transition ranges - which two paths are to be evaluated, and forms a weighted measured value. Integration values that represent the average power of the RF signal in a predefined integration period are derived by averaging all sampling values within the integration period.

The final measured values are the averaged result from several integration values.

Attenuator

Attenuator Z1 is designed in such a manner that a power of approx. 200 mW is fed to the RF sensor if nominal power is applied. Due to the high level of self-warming, the attenuators for the Sensors R&S NRP-Z23 and R&S NRP-Z24 are protected against direct contact by a plastic cage (cover) and insulating rubber caps over the coupling rings of the N connectors. For reasons of safety, these elements must always be replaced if lost or damaged.

Microwave Detector

The microwave detector A3 is a hybrid circuit. It contains the three measurement paths and a thermistor for temperature measurement. The detector has an RF signal input and a flexstrip connector for output signals, control signals and operating voltages with the following assignment (see Table 3-1):

Connector	Signal name	Description
W3:1	СНОР	Logic signal for controlling the choppers
W3:2	NTC	Thermistor connector (the other connector of the thermistor is connected to ground)
W3:3 W3:4	СНЗ	Output of the least sensitive measurement path
W3:5	–5VA	Negative operating voltage for the choppers
W3:6 W3:7	CH2	Output of the medium measurement path
W3:8	+5VA	Positive operating voltage for the choppers
W3:9 W3:10	CH1	Output of the most sensitive measurement path

Table 3-1Assignment of the flexstrip connector W3

The casing of the detector is at ground potential.

Analog Board

The analog board A2 contains three test channels of the same design, each consisting of an instrumentation amplifier, a buffer amplifier and a 14-bit A/D converter. The instrumentation amplifiers amplify the output difference voltage of the detectors and convert it into a ground-referenced voltage. The buffer amplifiers are quick-settling operational amplifiers with negative current feedback; they isolate the instrumentation amplifiers from the current peaks occurring at the A/D converter inputs. The A/D converters operate on the successive approximation principle. They have serial outputs.

The serial output data streams of the A/D converters are subjected to serial-parallel conversion in a CPLD and stored in three addressable registers. The digital board consecutively addresses and reads out these registers.

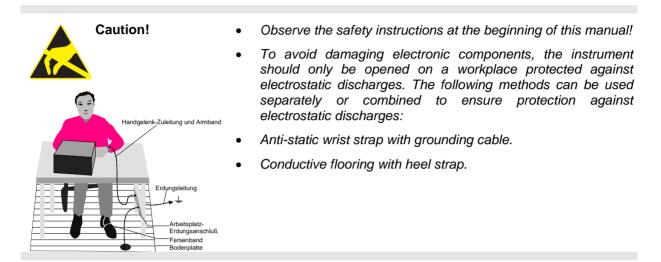
The analog board also includes an 8-bit D/A converter for generating a noise-like large-scale dither signal that is controlled by the digital board with a sequence of pseudo-random digital values.

The analog board contains a four-channel 12-bit A/D converter for measuring the substrate temperature of the detector as well as for monitoring the ± 5 V and ± 1.75 V operating voltages. The 12-bit A/D converter is supplied by the 3.3 V operating voltage of the digital board and is thus operational even if the voltage supply of the analog board is defective. It is connected to the synchronous serial interface of the digital board and utilizes the MICROWIRETM protocol.

The +5 V operating voltage of the analog board is generated from +3.3 V by a charge pump doubler with a subsequent linear regulator. The -5 V operating voltage is generated by a switching regulator with a very low output ripple voltage.

Digital Board

The digital board A1 mainly consists of a processor based on an Intel StrongARM SA1110 microcontroller, two SRAMs (total of 1 Mbyte) as random access memory and two flash PROMs (total of 2 Mbyte).


The interface to the R&S NRP base unit is formed by connector X1 on the digital board. In addition to the four conductors for the USB port, the sensor cable contains two signal wires for supplying a differential trigger signal.

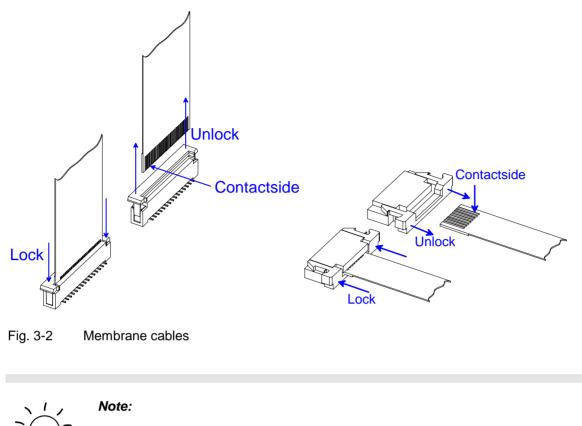
The connection to the analog board is established by press-in connector X2.

The digital board contains two DC/DC converters that generate the voltages +3.3 V and +1.75 V (for the microcontroller core) from the +5 V operating voltage.

Module Replacement

This section describes how to exchange the outer casing (shell halves) and replace the connecting cable and attenuator. If one of the electronic modules (microwave detector, analog board or digital board) is defective, the sensor has to be sent to Rohde & Schwarz Central Service for repair.

Required Tools


Torx screwdriver	Size	Т8
	Thread	M 2.5

Note!

The numeric values in brackets refer to the item in the list of mechanical parts and spare parts in Chapter 5.

These items are identical to the item numbers in the drawings illustrating the module replacement.

Remove membrane cables: Membrane cables can be removed after unlocking the female connector. **Connect membrane cables:** Note the contact side and lock the female connector.

List of Modules

Table 3-2	List of modules/spare parts for the R&S NRP-Z22/-Z23/-Z24

Item No.	Designation	Electrical identification	Stock No.
20	ANALOG BOARD	A2	**)
30	POWER SENSOR CABLE	W1	1137.7141.02
40	DIGITAL BOARD	A1	**)
50	18 GHZ DETECTOR	A3	**)
60	SCREW 7985/ISR-M2X8-A4 FOR POWER SENSOR CABLE W1		1148.2600.00 *)
70	SENSOR HOUSING		1137.6022.00
80	LABEL 1 R&S NRP-Z22 LABEL 1 R&S NRP-Z23 LABEL 1 R&S NRP-Z24		1137.7535.00 1137.8031.00 1137.8531.00
90	LABEL 2 R&S NRP-Z22 LABEL 2 R&S NRP-Z23 LABEL 2 R&S NRP-Z24		1137.7541.00 1137.8048.00 1137.8548.00
100	LABEL (PAD) R&S NRP-Z22 LABEL (PAD) R&S NRP-Z23 LABEL (PAD) R&S NRP-Z24		1137.7793.00 1137.8131.00 1137.8560.00
110	ATTENUATOR (10 DB) R&S NRP-Z22 ATTENUATOR (20 DB) R&S NRP-Z23 ATTENUATOR (25 DB) R&S NRP-Z24	Z1	1137.7770.00 0858.0598.00 0858.0898.00
120	PROTECTION CAP (ONLY FOR R&S NRP-Z23 AND R&S NRP-Z24)		0858.0717.00
130	COVER (PAD)		0858.0700.00
140	SCREW 7985/ISR-M2X10-A4 FOR DIGITAL BOARD A1		1148.2917.00 *)
150	SHIELDING		1137.6068.00 *)
170	SCREW 7985/ISR-M2X8-A4 FOR OUTER CASING		1148.2600.00 *)

 ^{*)} Available but not maintained in spare parts stock, i.e. delivery time may be longer.
 **) Spare part not available; to be replaced only by Rohde & Schwarz Central Service.

Opening and Reassembly (Exchange of Plastic Shell Halves)

Opening

- > Undo two screws (170) on the two sides of the cable connector.
- First pull off the plastic shell halves of the cable connector and take them apart by twisting them at the RF connector.
- The shielding is attached by a catch on the body on the RF connector side. Slightly bend and unlock the shielding by firmly pressing on the two narrow sides and pull it off in the cable direction.

Reassembly

- > Push the shielding on and lock it into the catch on the body.
- Insert the sensor into one of the shell halves and lock the second shell half on the RF connector side and close at the cable connector.
- > Attach the shell halves to the body using two screws (170).

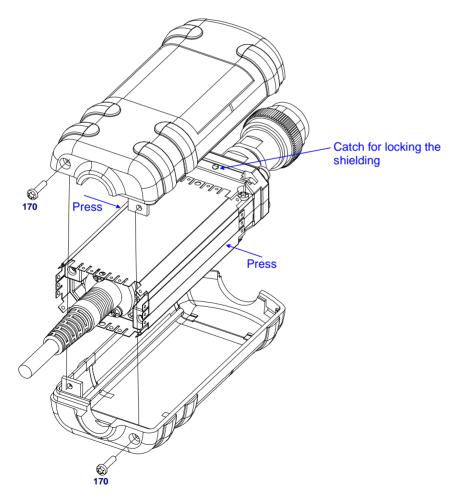


Fig. 3-3 Opening the sensor

Caution:

Adhere to a torque of 29 Ncm for all screws.

Replacement of Sensor Cable W1

Removing the Sensor Cable

- > Open the sensor (see page 3.8).
- ➤ Undo 6 screws (140).
- > Carefully remove digital board A1 from the body.
- > Unplug sensor cable W1 from the digital board.
- > For removing sensor cable W1, undo two screws (60) and remove the cable from the body.

Installing the Sensor Cable

- > Install in the reverse order.
- Ensure that the guide pins of press-in connector X2 lock into the corresponding boreholes of the digital board.

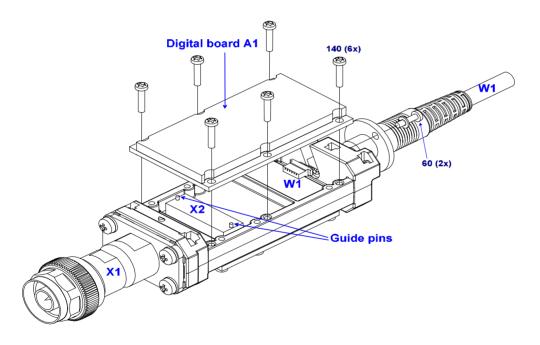


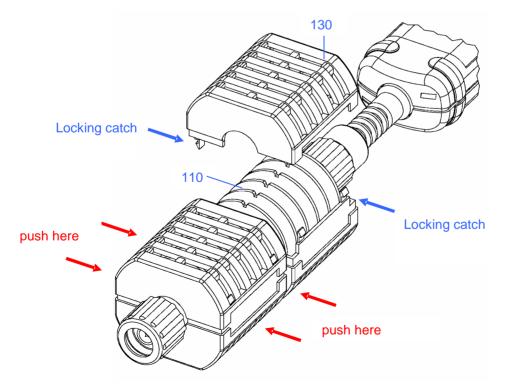
Fig. 3-4 Replacement of sensor cable

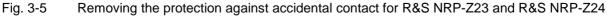
Replacement of Attenuator

Removing Protection against Accidental Contact (only R&S NRP-Z23/-Z24)

- > Press the shell halves (130) together at the indicated locations (Fig. 3-5) to unlock them.
- ➢ Remove attenuator (110).

Assembling Protection against Accidental Contact (only R&S NRP-Z23/-Z24)


- > Insert new attenuator into the shell halves (130).
- > Press the shell halves firmly together until the locking catches engage.


Measuring Attenuator and Store S-Parameters in Sensor

Measure attenuator and store the S-parameters in the sensor (see description in Chapter 2 of this service manual and in Chapter 3 of the operating manual).

If the data of the old attenuator is used to operate the sensor, it must be assumed that the measurement accuracy no longer complies with the specifications!

Troubleshooting

Malfunctions may sometimes be due to simple reasons but may also result from defective components. These troubleshooting instructions will enable you to isolate the error down to the module level. Module replacement and repair should be carried out by our customer service. It is therefore recommended to send the unit to the nearest service center (see list of addresses at the beginning of this manual).

Caution!

Prior to opening the sensor and replacing modules, disconnect the sensor from the base unit (R&S NRP) or USB adapters (R&S NRP-Z3 or R&S NRP-Z4).

Overview of Errors, Causes and Corrective Steps

This section provides an overview of possible errors, their causes and corrective steps.

Problems when plugging in the sensor or switching on the R&S NRP base unit

• Error: The power sensor is not found (neither measured values nor error messages are displayed on the R&S NRP base unit).

Troubleshooting instruction	Potential error source and further corrective steps
Unplug sensor from base unit and check male and	Defective connection.
female connector for damage.	Replace the sensor cable and/or the connector on the R&S NRP
\downarrow	
Check whether the error also occurs on another	Error source within base unit.
base unit or in another channel.	Refer to Chapter 3 of the R&S NRP service manual for detailed troubleshooting
	Error source within sensor.
	Open sensor and check connection of sensor cable W1 with digital board.
	Exchange sensor cable.
	Send sensor in for repair (digital board possibly defective).

• Error: The R&S NRP base unit has detected an error (pop-up window contains error message, e.g. Sensor communication error).

Troubleshooting instruction	Potential error source and further corrective steps
	Base unit and sensor cannot communicate with each other. The firmware versions may not be compatible.
↓ Load current firmware into sensor and base unit according to Chapter 4	If updated firmware does not correct the problem, perform the same measures as described above (sensor is not found).

• Error: The power sensor has detected an error (*HW Error* displayed at extreme right of title bar).

Troubleshooting instruction	Potential error source and further corrective steps		
	The sensor detected an error during selftest or during communication (hardware defect or defective voltage supply).		
\downarrow			
Check whether the error also occurs on a different	Error source within base unit.		
base unit.	Refer to Chapter 3 of the R&S NRP service manual for detailed troubleshooting.		
	Error source within sensor.		
	Send sensor in for repair (analog board or digital board possibly defective).		

Problems during measurement

• Error: Measured power readings are erroneous.

Troubleshooting instruction	Potential error source and further corrective steps
Perform performance test or selftest according to Chapter 1.	The RF sensor or the attenuator was overloaded: indicated by very poor matching and/or large measurement errors.
	Send the RF sensor and/or attenuator in for repair (microwave detector or attenuator defective). The attenuator can also be replaced onsite if it is possible to measure its S-parameters (see section Replacement of Attenuator)
	Other parts of sensor hardware are defective.
	Send sensor in for repair (microwave detector or analog board defective).
	Sensor hardware is probably ok since test limits are only slightly exceeded.
	Send sensor in for calibration.

4 Firmware Update

Chapter 4 provides information on the firmware update. Descriptions enclosed with the firmware update can be filed here.

Installation of New R&S NRP-Z22/-Z23/-Z24 Firmware

Use the Firmware Update program module to load new firmware for the Power Sensors R&S NRP-Z22, R&S NRP-Z23 and R&S NRP-Z24. The module is part of the R&S NRP Toolkit that is supplied on a CD-ROM together with the power sensors and enables you to update the boot loader and the application firmware.

The current firmware versions can be downloaded from the R&S homepage on the Internet, since the CD-ROM accompanying the power sensors contains the firmware status at the time of delivery.

Hardware and software requirements

The system requirements for a firmware update are the same as for the operation of the power sensor on a PC (an update via the power meter is not possible):

- PC with free USB port.
- USB Interface Adapter R&S NRP-Z3 or R&S NRP-Z4.
- Operating system Windows[™]98, Windows[™]ME, Windows[™]2000, or Windows[™]XP.
- The R&S NRP Toolkit software must already be installed on your PC.
- One of the following files must be selected (depending on the software component to be updated):
 - <Type>_Sensor<Version Number>.nrp Application
 - Bootloader_<Version Number>.nrp, Bootloader

The files are available in the \ software\ firmware\ sensors directory of the CD-ROM.

Preparation

- > Connect the R&S NRP power sensor to the PC using one of the two USB interface adapters.
- If a second R&S NRP-Z power sensor or an R&S NRP is connected to the PC, unplug these devices from the PC.
- Shortly afterwards, the PC should have identified the new USB hardware and assigned the appropriate driver from the R&S NRP Toolkit to the power sensor (brief message in a small window).

If you forgot to install the R&S NRP Toolkit beforehand, Windows will try in vain to find a USB driver for the power sensor. If this happens, the R&S NRP-Zxx is highlighted by a yellow exclamation mark in the Windows device manager. In this case, proceed as follows:

- > Abort the dialog for driver installation.
- Install the R&S NRP Toolkit from the CD-ROM. Then manually assign the USB driver from the toolkit to the power sensor.
- Go to Control Panel Add/Remove Hardware and start the hardware assistant to search for new components.
- Mark the R&S NRP-Zxx in the list of hardware components and complete the driver installation.
- Unplug the power sensor and reconnect it.

Updating the application firmware

Firmware Update Heb

Firmware File

NrpFirmware.nrp

State Messages

Click 'Start' to write 'NrpFirmware.nrp'

Download

Download

Stat

Aborn
Exit

 $\underline{\wedge}$

irmware File Y:\NRP-Doc\NRP\Firmwarevi		 Browse
,	asionen xonelli Anipicnip)	DIUWSe
State Messages		• A
Writing finished Checksum OK		<u> </u>
Erasing		
Erasing finished		
Programming		
र		

The update can be started as follows:

- Or start NRP Toolkit Firmware Update from the Windows Start menu.

The dialog box on the left is displayed next.

- If the update was started via the Windows Start menu, enter the file name of the application firmware in the Firmware File box (or search for the name by using the Browse button).
- Click the Start button to start the file transfer, which is performed automatically.

> Observe the following:

- Do not disconnect the power sensor from the PC.
- Neither connect nor disconnect the power supply for the R&S NRP-Z3 adapter.
- Exit the Firmware Update program only after it has been completely executed.
- During the update, the State Messages box informs you of the progress. The update has been completed successfully if the message 'Device <Type Designation><Serial Number> is active' appears.
 - > You can then use the power sensor for measuring.

Potential problems

- Error in the compatibility and consistency checks.

In this case, the update is aborted and an error message is output.

Unplug the power sensor, reconnect it and start the update again.

Updating the boot loader

The boot loader update is similar to the update of the application firmware (see above).

Instead of the application, however, you must load the new boot loader named

Bootloader_<Version Number>.nrp

Strictly observe the warnings under "Updating the application firmware", since the destruction of the boot loader will generally require a repair of the power sensor.

Potential problems

- The power sensor cannot be accessed after the update (error message).
- Exit the Firmware Update program, unplug the power sensor from the PC and reconnect it. The power sensor is now ready for operation.

5 Documents

This Chapter provides information for ordering spare parts and contains the relevant documents for the Rohde & Schwarz Power Sensors R&S NRP-Z22, R&S NRP-Z23 and R&S NRP-Z24.

Shipping of Instrument and Ordering of Spare Parts

For service and repair work as well as ordering spare parts and modules, please contact your Rohde & Schwarz representative or our spare parts express service.

A list of addresses of all Rohde & Schwarz representatives as well as our spare parts express service is provided at the beginning of this service manual.

The following data is required so that we can process your requests quickly and correctly and determine if your instrument is still under warranty:

- Instrument model
- Serial number
- Detailed error description in case of repair
- Contact partner for checkbacks

Shipping of Instrument

For the transport of the instrument, ensure that it is sufficiently protected against mechanical damage and use antistatic packaging materials.

- > Repack the instrument as it was originally packed. The antistatic packaging foil prevents unintentional electrostatic charging.
- If you do not use the original packaging, include sufficient padding to prevent the instrument from slipping inside the package. Wrap the instrument in antistatic packaging foil to protect it against electrostatic charges.

Ordering of Spare Parts

The following data is required so that we can deliver spare parts quickly and correctly:

- R&S stock number (refer to the spare part lists in this Chapter)
- Designation
- Number of units
- Instrument type for the replacement part
- Contact person for checkbacks

The R&S stock number to be used when ordering replacement parts and modules as well as power cables can be found further below.

Ordering of Replacement Sensors

Rohde & Schwarz maintains a replacement program for a number of power sensors. Within this program, it is possible to provide a fully operational power sensor to replace a defective one at short notice and at a fixed price. Please note that replacement sensors are used equipment but are always tested. They are therefore equivalent to new sensors even though they may exhibit slight signs of use. If required, the delivery of replacement sensors can include a new calibration. If interested, please contact your nearest Rohde & Schwarz office.

Spare Parts

The R&S stock numbers necessary for ordering replacement parts and modules can be found in the spare parts list provided below.

Item No.	Designation	Electrical identification	Stock No.
20	ANALOG BOARD	A2	**)
30	POWER SENSOR CABLE	W1	1137.7141.02
40	DIGITAL BOARD	A1	**)
50	18 GHZ DETECTOR	A3	**)
60	SCREW 7985/ISR-M2X8-A4 FOR POWER SENSOR CABLE W1		1148.2600.00 *)
70	SENSOR HOUSING		1137.6022.00
80	LABEL 1 R&S NRP-Z22 LABEL 1 R&S NRP-Z23 LABEL 1 R&S NRP-Z24		1137.7535.00 1137.8031.00 1137.8531.00
90	LABEL 2 R&S NRP-Z22 LABEL 2 R&S NRP-Z23 LABEL 2 R&S NRP-Z24		1137.7541.00 1137.8048.00 1137.8548.00
100	LABEL (PAD) R&S NRP-Z22 LABEL (PAD) R&S NRP-Z23 LABEL (PAD) R&S NRP-Z24		1137.7793.00 1137.8131.00 1137.8560.00
110	ATTENUATOR (10 DB) R&S NRP-Z22 ATTENUATOR (20 DB) R&S NRP-Z23 ATTENUATOR (25 DB) R&S NRP-Z24	Z1	1137.7770.00 0858.0598.00 0858.0898.00
120	PROTECTION CAP (ONLY FOR R&S NRP-Z23 AND R&S NRP-Z24)		0858.0717.00
130	COVER (PAD)		0858.0700.00
140	SCREW 7985/ISR-M2X10-A4 FOR DIGITAL BOARD A1		1148.2917.00 *)
150	SHIELDING		1137.6068.00 *)
170	SCREW 7985/ISR-M2X8-A4 FOR OUTER CASING		1148.2600.00 *)

Table 5-1 List of modules/spare parts for the R&S NRP-Z22/-Z23/-Z24

^{*)} Available but not maintained in spare parts stock, i.e. delivery time may be longer. **) Spare part not available; to be replaced only by Rohde & Schwarz Central Service.